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1. Introduction

The importance of market liquidity as a characteristic and as a risk factor in

international financial markets is well known to academics and practitioners

and has been highlighted in numerous studies over the years. Liquidity is

an elusive concept and is loosely defined as the ease with which transactions

occur in the marketplace with little impact on prices. Market liquidity is

multidimensional thus it needs to be approached and measured carefully

using appropriate methods and tools.

Borio (2000) argues that liquidity has four separate dimensions. Tight-

ness, denotes the difference between buy and sell prices and is widely repre-

sented by the bid-ask spread. Depth relates to the quantity/size of transac-

tions in financial markets. Immediacy refers to the speed with which trans-

actions are executed. Finally, resiliency refers to the ease with which prices

revert to their normal levels after temporary order imbalances (a discussion

on the measurement of the multi-faceted dimension of liquidity in financial

markets is provided by Diaz and Escribano, 2020). Although we know enough

about the first three dimensions of liquidity (especially about the tightness

and depth dimension), we know very little about resiliency which has been

neglected by the academic community. This study is devoted to liquidity

resiliency and aims at offering new insights into the features, characteristics,

and workings of market liquidity resiliency.

The investigation of resiliency is particularly important during periods of

market stress where liquidity can evaporate quickly and can cause adverse
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contagion effects across different markets and asset classes and thus adversely

affect financial stability. Thus, being able to measure the speed at which liq-

uidity can revert to its long term equilibrium value after a financial shock is

of paramount importance not only for market participants and investors who

face significant execution and price risk, but also for policymakers and regu-

lators who assess the resilience of the economy and financial system and take

remedial actions when needed. Understanding resiliency is also important for

stock exchanges and trading platforms that need to know the replenishment

mechanism of the order book in order to be able to compete for liquidity.

As Bhattacharya and Spiegel (1998) argue, the ability of a stock exchange

to absorb unusual volatility, which may arise from order imbalances, im-

pending news announcements or other triggers, without closing down should

constitute a legitimate metric for liquidity.

Resiliency is directly linked to the notion of liquidity uncertainty. During

periods of market stress there is a greater degree of uncertainty and trading

volume decreases for a large group of assets, including sovereign bonds (the

drop in trading volumes can also be associated with the possibility of “liq-

uidity black holes” discussed by Moorthy, 2003). Easley and O’Hara (2010)

use a model of Knightian uncertainty proposed by Bewley (2002) to explain

the “uncertainty bid-ask spread” that allows traders to improve their rank-

ordering of alternative portfolios in the light of uncertainty. Similar expla-

nations are provided by Routledge and Zin (2009) and Ozsoylev and Werner

(2011) who suggest a widening of bid-ask spreads in the face of uncertainty
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would take place to reduce the likelihood of trading. That is, whenever an

asset’s trading volume drops it is expected that traders will strive to widen

the bid-ask spread following an increase in uncertainty.

Rehse et al. (2019) provide empirical support to those theoretical predic-

tions concluding that gains from trading drop during periods of uncertainty

and the overall welfare lowers amid wider bid-ask spreads, i.e. lower liquidity.

The authors argue that uncertainty can be seen as a determinant of liquid-

ity commonality as studied by Karolyi et al. (2012), among others. This

argument is confirmed by Chung and Chuwonganant (2014) who show that

market uncertainty exerts a large market-wide impact on liquidity, which

gives rise to co-movements in individual asset liquidity. Vayanos (2004) and

Brunnermeier and Pedersen (2009) argue that liquidity can dry-up as a re-

sult of flight-to-quality effects, during which liquidity providers become more

risk averse and rebalance their positions towards assets with low levels of

uncertainty. The aforementioned studies indicate that resiliency as a stand-

alone liquidity dimension is affected by market uncertainty justifying the

choice of our selection to use the European sovereign debt crisis period for

our experiments.

Our study contributes to the literature in a number of ways. First, we em-

pirically study the resiliency of the euro area sovereign bond market. Previ-

ous studies have mainly focused on stock markets (for instance, Bhattacharya

and Spiegel, 1998 study the resiliency of the NYSE stock market, Coppejans

et al., 2004 investigate the resiliency of the Swedish stock index futures mar-
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ket, and Degryse et al., 2005 study the resiliency of the Paris Bourse) whilst

bond markets remain unexplored with regard to liquidity resiliency. Given

the different features of bonds compared to those of stocks, it remains to

be seen whether findings from stock markets carry over to the bond mar-

ket. Generally speaking, bond market investors are characterised by higher

sensitivity to downside risk than stock market investors, and thus a liquidity

premium would be required as compensation (Bai et al., 2016; Kinateder and

Papavassiliou, 2019). The euro area bond market although integrated due to

participation in the Economic and Monetary Union (EMU) is a market that

consists of countries with different credit risk characteristics, thus liquidity

is dispersed and the study of resiliency becomes even more important than

in other bond markets, such as the U.S. Treasury market1.

Second, we define resiliency as the rate of mean reversion in liquidity

and measure it using two different methodological approaches: the first be-

ing an Ordinary Least Squares regression (OLS) approach, while the second

being a combination of an OLS approach and the least absolute shrinkage

and selection operator (LASSO) machine learning approach. Our definition

1The euro area sovereign bond market is one of the world’s largest capital markets.
According to the Association for Financial Markets in Europe (AFME), the total quarterly
issuance in Europe (EU member states, UK and EU commission) was EUR 814 billion
during Q4 2022. The average daily trading volume in the eurozone (bonds and bills)
during 2022 was EUR 107 billion. The total traded notional value by EU sovereign issuer
in 2022 reached 29% for Germany, 28% for Italy, 22% for France, 8% for Spain, and 3%
for the Netherlands (International Capital Market Association (ICMA), Secondary Market
Practices Committee, European Secondary Bond Market Data, 2022). Due to the bond
market’s sheer size and importance, this study will provide enlightening insights on the
workings of bond market liquidity resiliency.
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of resiliency is in line with the works of Kyle (1985), Harris (2002), Degryse

et al. (2005), and Large (2007), among others. Our empirical approach

to measure resiliency as the rate of mean reversion in liquidity is in agree-

ment with previous works by Dong et al. (2007) who employ a pricing-error

process to estimate resiliency and Kempf et al. (2015) who study the re-

siliency of the electronic order book of the London Stock Exchange. The

LASSO approach has been previously used as a variable selection technique

in applications that range from statistical arbitrage to corporate bankruptcy

forecasts and asset pricing (Tian et al., 2015; Huck, 2019; Chinco et al.,

2019; Freyberger et al., 2020; Feng et al., 2020). We separately estimate and

compare spread-based resiliency constructed using relative spread liquidity

proxies and depth-based resiliency constructed using quoted depth liquidity

proxies. Our findings provide evidence that the two aforementioned meth-

ods can be used interchangeably in the measurement of market resiliency

regardless of whether resiliency is estimated in terms of spreads or depths.

Third, we focus our empirical analysis on a detailed high-frequency dataset

from the MTS markets, in contrast to earlier studies that have used datasets

of lower sampling frequencies, such as daily or monthly (Bhattacharya and

Spiegel, 1998). The advantages of using high-frequency data have been high-

lighted in the related literature and extend from statistical gains to higher

predictive accuracy, among other things (see Gargano et al., 2019 for a dis-

cussion). Moreover, the use of high-frequency data enables the construction

of more accurate microstructure-based liquidity measures (as well as more
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accurate return and volatility measures) that are able to capture multiple

liquidity dimensions, and thus of paramount importance for the study of

liquidity resiliency.

Fourth, we investigate liquidity resiliency in core (Germany and the Nether-

lands) and periphery (Italy and Spain) euro area bond markets during both

tranquil and crisis periods. During the euro area sovereign debt crisis, the

liquidity of periphery bond markets was significantly impaired as opposed to

liquidity levels of core euro area countries (see discussions by Beetsma et al.,

2013; Pelizzon et al., 2016; Schneider et al., 2016; O’Sullivan and Papavas-

siliou, 2020). Therefore it is very important to gain insights on resiliency

across core and periphery countries and during crisis and calm periods, as

resiliency’s behavior depends on the state of the economy (see Ali Nasir,

2022 for a discussion of the impact of financial crises on European financial

markets) 2. As an example, Félez-Vinas (2019) highlights the adverse effects

on resiliency as a result of episodes of liquidity dry-ups during times of stress

2Although the sovereign debt crisis of 2009/12 was the most severe crisis in Europe
and it offers a perfect laboratory to study the unique properties and features of liquidity
resiliency, we also experimented with the Brexit, Russian-Ukraine war, and COVID-19
stress episodes. Brexit’s impact on euro area sovereign bond markets was negligible. The
euro area bond market’s initial response to Russia’s invasion was swift and government
yield curves shifted upward, however, the duration of the financial shock was much shorter
and of a much lower magnitude than that of the sovereign debt crisis. Also, the liquidity
deterioration during the COVID-19 outbreak was not as severe as the liquidity deteriora-
tion during the euro area sovereign debt crisis period. The ECB’s response was speedy
and sizable as, building on the experiences from the sovereign debt crisis of 2009/12, Eu-
rope was better prepared to deal with a new crisis. We find that resiliency measures, on
average, exhibit the same properties as those reported in Tables 1-4, however, the level of
deterioration of resiliency was much smaller than that of the sovereign debt crisis.
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which is increasingly relevant for regulators and policymakers. We also con-

dition for time-to-maturity as resiliency levels may differ across the various

segments of the yield curve. Along these lines we employ benchmark secu-

rities of 2-, 5-, 10-, and 30-year maturity thus capturing the full maturity

spectrum of the euro area yield curve. Fifth, we explore the intertempo-

ral associations among resiliency, volatility, returns, and credit default swap

(CDS) spreads for the first time in the literature using Granger causalities

and impulse response functions. Finally, our paper investigates the presence

of common factors in liquidity resiliency of the euro area sovereign bond

market offering interesting new insights.

Our main findings can be summarised as follows. We find that quoted

depth resiliency increases (to a larger extent than relative spread resiliency)

as we move from short-term to long-term maturity bonds, especially in the

pre-crisis period. Previous findings show that the liquidity premium increases

with maturity which is in line with our findings that spreads widen and

depths fall as we move up the maturity spectrum. However, the fact that

long-term maturity bonds have higher quoted depth resiliency means that

this overlooked dimension of liquidity actually improves with maturity. Both

spread-based and depth-based resiliency is negatively correlated with spreads

and positively correlated with depths, confirming previous findings from the

stock market (Kempf et al., 2015). Correlations among spread, depth, and

resiliency liquidity measures are very small in absolute terms indicating that

the information contained in resiliency is unique, thus rendering resiliency
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nearly independent from the other two liquidity dimensions. The magnitude

of these correlations does not dramatically change during the crisis period

indicating that resiliency remains relatively stable regardless of the state of

the economy.

We also document strong bidirectional causalities between resiliency and

sovereign credit risk, volatility, and sovereign bond returns, providing ev-

idence that liquidity resiliency is a priced variable. Lastly, we document

strong commonalities in spread-based and depth-based resiliency in both

pre-crisis and crisis periods. Commonality of core countries is lower than

that of periphery countries during the crisis period. Commonality slightly

increases for core countries in the crisis whilst it declines for periphery coun-

tries. Interestingly, commonality in spread-based resiliency is stronger than

commonality in depth-based resiliency in both core and periphery countries

and during calm and crisis periods.

The rest of the paper is organized as follows. Section 2 presents the related

literature. Section 3 discusses the methods used to empirically estimate

resiliency. Section 4 describes the dataset. Section 5 presents and discusses

our empirical findings. Finally, Section 6 concludes the paper.

2. Related literature

The topic of financial market liquidity resiliency has been neglected in the

empirical literature. The seminal paper of Garbade (1982) defines resiliency

as the order replenishment process through which new orders arrive into
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the market in response to temporary order imbalances. Kyle (1985) argues

that market liquidity encompasses a number of transactional properties of

market, i.e. tightness, depth, and resiliency. He defines the latter as the

speed with which prices recover from a random uninformative shock. This

interpretation is more recently used by Obizhaeva and Wang (2013) who

define market resiliency as the speed at which supply or demand (proxied by

price of assets) in the markets converge or recover to their new steady state.

Bhattacharya and Spiegel (1998) investigate market resiliency around

stock exchange suspensions and find that, on the one hand, there is great

substitutability among the various liquidity dimensions, and on the other

hand, the resiliency of an exchange can be improved following regulatory

changes that would enable an exchange to absorb large and unusual volatil-

ity shocks over time. Harris (2002) defines resiliency as the process through

which prices revert to former levels after a shock in response to large order

flows. He argues that a market is resilient when it is impossible for unin-

formed traders to substantially affect market prices. Coppejans et al. (2004)

use a dataset from the Swedish stock index futures market and show that

shocks to liquidity dissipate quickly, indicating a high degree of resiliency.

Degryse et al. (2005) define resiliency as the speed of recovery of the market

after a shock, defined as a trade that increases the bid-ask spread. They

relate resiliency to the state of the market and firm attributes such as tick

size and market capitalization.

In a theoretical study, Foucault et al. (2005) propose conditions under
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which resiliency is high. They find that liquidity resiliency increases with the

increase in patient traders and reduces on the reduction of tick size. Dong

et al. (2007) rely on Kalman-filter estimation techniques to empirically esti-

mate resiliency for a selection of 100 NYSE stocks. They show that resiliency

is determined by trading activity, information asymmetry, tick size, and in-

traday volatility and these attributes exhibit the expected sign in relation to

resiliency. Large (2007) measures resiliency using a dynamic model of the

limit order book activity which takes the form of a multivariate continuous

time point process with an adapted intensity. It actually categorizes event

types following Biais et al. (1995), in order to distinguish resiliency events

and the shocks that precede them from other orders. Using a London Stock

Exchange electronic limit order book, the author manages to quantify the

resiliency of the limit order book in three respects: its magnitude, delay, and

trade direction.

Kempf et al. (2015) find that resiliency increases with the proportion of

patient traders, decreases with the order arrival rate, and increases with tick

size, supporting the theoretical predictions of Foucault et al. (2005). They

also show that high-frequency trading can lead to higher market resiliency,

however, in times of high volatility the beneficial effects of high-frequency

trading on resiliency are lowered. Gomber et al. (2015) employ intraday event

study methods to study how liquidity shocks affect the cost of a roundtrip

trade of given size which they call Exchange Liquidity Measure (XLM). They

find that resiliency is higher after large transactions as opposed to being lower
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after smaller transactions. That is, when resiliency is high, liquidity reverts

back to normal levels more quickly than when resiliency is low.

Bessembinder et al. (2016) consider the role of market resiliency in ex-

tending the theory of strategic trading around a predictable liquidation. Em-

pirical evidence implies that traders prefer to supply liquidity in resilient mar-

kets rather than exploit predictable trades. Danielsson et al. (2018) measure

resiliency using the idea of the Threshold Exceedance Duration (TED), de-

fined as the length of time between the point at which liquidity deviates from

a specified threshold and the first point in time at which it reverts back to at

least that level. Félez-Vinas (2019) analyses the impact of market fragmen-

tation on resiliency, which she defines as the speed of recovery of the market,

in normal conditions and in times of stress. The author finds that fragmen-

tation has a positive effect on resiliency as it increases the market’s ability to

converge towards its long-run liquidity levels. Kim and Kim (2019) use the

Beveridge-Nelson decomposition and the spectral analysis in the frequency

domain to measure the resiliency of the stocks listed on the NYSE, AMEX

and NASDAQ stock exchanges during the period 1964 to 2013.

Griffith and Roseman (2019) and Ibikunle et al. (2021) also measure

resiliency as an asymmetric mean-reversion process in an effort to exam-

ine the effects of an increase in the minimum price variation on limit order

book liquidity in NASDAQ-listed stocks, as well as the effects of dark trad-

ing restrictions on liquidity and informational efficiency. Hua et al. (2020)

propose a resiliency covariance-based measure that encompasses both the
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price impact of a liquidity shock and its persistence. Lower values of such

resiliency measure are associated with higher expected returns. Clapham et

al. (2020) measure order book resiliency using a regression approach which

relates post-event changes in spreads and depth to the specific net liquidity

provision of groups of traders following a market impact event. Their results

show that spread-based resiliency is accomplished by high-frequency traders

who are able to replenish the top of the order book within 5 seconds after the

market impact event. Roşu (2020) finds that informed trading in limit or-

der markets improves liquidity resiliency and the bid-ask spread. Broto and

Lamas (2020) propose a new approach to analyse resiliency which is based on

liquidity volatility. Liquidity resiliency has deteriorated after the global fi-

nancial crisis and spillovers from liquidity volatility to returns volatility have

intensified.

Batten et al. (2022) use the aggregate liquidity proxy of Pástor and

Stambaugh (2003) to estimate the resiliency of the S&P 500 index from 1990

to 2018. This measures the speed with which prices recover from a previous

day’s order flow shock. Fishe et al. (2022) examine market resiliency of

E-mini futures by focusing on the timing of new order decisions after an

execution removes quantity from the order book. Tang et al. (2022) find

that financial market and institution development, as well as the depth of

financial markets are beneficial to the improvement of resiliency.

Most of this literature examines liquidity resiliency from a theoretical per-

spective with empirical applications in stock or futures markets. In contrast
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to these papers, our study focuses on the empirical estimation of liquidity

resiliency in the euro area government bond market. Along with extending

the measurement of liquidity resiliency to another asset class, this also allows

us to measure how resiliency is affected by extreme market uncertainty as

our data period includes the euro area sovereign debt crisis. Our work also

complements the literature on the use of machine learning applied to market

microstructure research. Given the recent advances in financial technology

(FinTech) market microstructure needs to evolve and machine learning tech-

niques can play an important role in that evolution (Easley et al., 2021). Our

proposed methodological approach has enabled us to provide a comparison of

resiliency across countries with different credit risk characteristics and during

normal and stressed time periods, thus offering useful insights for policy 3.

Also, our study complements previous literature on central limit order book

markets (Degryse et al., 2005; Kempf et al., 2015; Danielson et al., 2018),

those with a similar structure to that of MTS bond markets, in which trading

is anonymous and primary dealers play an important role in specifying prices

and quantities and in promoting liquidity.

3. Methods

In this paper we define resiliency as the rate of mean reversion in liquidity.

We use the two main liquidity dimensions to measure resiliency, tightness

3An interesting discussion of the impact of crisis periods on the sovereign bond market
is provided by Ali Nasir et al. (2023).
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and depth. That is, we measure the extent of deviations of liquidity, either

spread-based or depth-based, from its long-term value that is eventually offset

by net liquidity flows over the next time period. The long-run equilibrium

liquidity is proxied by a time-varying average level of liquidity and resiliency

is the rate of mean reversion around this level of liquidity. We consider

the relative spread and the quoted depth measures to proxy for liquidity of

all benchmark bonds in our sample, following O’Sullivan and Papavassiliou

(2019,2020).

We take two separate methodological approaches to empirically estimate

resiliency. Our first approach is similar to that of Kempf et al. (2015). We

model the relationship between past liquidity levels Lt−1 and current liquidity

flows ∆Lt = Lt − Lt−1 as a mean reversion model of the form:

∆Lt = κ (φ− Lt−1) + εt (1)

where φ denotes liquidity’s long-run value, κ is the speed of adjustment to

liquidity’s long-run value which measures the level of resiliency, and εt is a

normally distributed white noise error term. Other things being equal, the

higher the speed of adjustment κ the higher the resiliency, which translates

into liquidity improvements.

Empirically, liquidity is persistent (Chordia et al., 2000; Hasbrouck and

Seppi, 2001). To account for serial correlation in the residuals we include past
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liquidity changes as additional explanatory variables in the model. Using the

Akaike information criterion (AIC) we find that the inclusion of three lags

is adequate to remove serial correlation in the model’s residuals. In doing

so, we eliminate possible bias in the estimation of resiliency as denoted by

parameter κ. For each country’s benchmark bonds we estimate the following

model for each trading day using 5-minute frequency liquidity data:

∆L
S/D
i,t = α

S/D
i,T − κ

S/D
i,T L

S/D
i,t−1 +

3∑
τ=1

ψ
S/D
i,t−τ∆L

S/D
i,t−τ + ε

S/D
i,t (2)

where S/D indicates whether liquidity is proxied via the relative spread (S)

or the quoted depth (D), and t denotes the time index of day T .

Our second methodological approach to measuring liquidity resiliency is

a two-stage regression approach that uses the LASSO model. To the best of

our knowledge this is the first attempt in the related literature to empirically

estimate resiliency using the LASSO method. The LASSO is a machine

learning modeling technique that has become quite popular in recent years

further to advances in financial technology (FinTech) applications. It was

first introduced by Tibshirani (1996) and since then it has been used as

an attractive technique for regularization and variable selection for high-

dimensional data (see papers by Fan and Peng, 2004 and Bickel et al., 2009

for a discussion on the LASSO’s theoretical properties).

Estimating the regression coefficients in a linear regression model using
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the LASSO, involves minimizing an objective function that includes a L1 reg-

ularization term that tends to shrink the number of features. LASSO is used

as a variable selection method as it penalizes the sum of the absolute values

of the regression coefficients, forcing the shrinkage of certain coefficients and

thus acting as a variable selection process.

Consider data of the form (X i, yi) , i = 1, 2, ..., N , whereX i = (xi1, ..., xip)
T

are the predictor variables and yi are the response variables for the ith ob-

servation. Assuming that the observations are independent as in standard

regression models, we standardize the xi,j by subtracting the mean and di-

viding by the standard deviation. Denoting β̂ =
(
β̂1, ..., β̂p

)T

the LASSO

estimate
(
α̂, β̂

)
is defined by:

(
α̂, β̂

)
= arg min


N∑
i=1

yi − α−
∑
j

βjxij


2 (3)

subject to
∑

j |βj| ≤ t. The term t ≥ 0 is a tuning parameter that controls

the amount of shrinkage that is applied to the estimates. Let t0 =
∑∣∣∣β̂o

j

∣∣∣
where β̂o

j denotes the full least squares estimates. Values of t < t0 will cause

shrinkage of the solutions towards 0 with some coefficients taking on 0 values,

thus being able to select and use a smaller subset of predictors from a larger

pool of predictors that exhibit the strongest effects.

We take a two-step process to measuring liquidity resiliency. In the first

17



step, we use the LASSO as a purification tool that enables us to get more

refined relative spread and quoted depth liquidity measures. We run the

LASSO model for all four maturity segments (2-, 5, 10-, and 30-year bench-

mark bonds) for the period running from January 2008 to December 2013.

We use the following regressors in the LASSO model: 5-minute relative

spreads, 5-minute quoted depths, 5-minute returns, and 5-minute squared

returns (variances) with 3 lags each. The 5-minute intervals are artificially

constructed using linear interpolation methods. In total, we use 48 regressors

(4 regressors across 4 maturities with 3 lags each) whilst we use either relative

spreads or quoted depths from a single bond as the dependent variable. We

use lags of spreads and depths as regressors in order to account for autore-

gressive effects in liquidity. We use returns and squared returns as regressors

due to the strong bi-directional causalities that exist between them and liq-

uidity. Previous studies show that the effects of liquidity on asset prices are

statistically and economically significant (Amihud et al., 2005). The relation-

ship between liquidity and volatility is also well documented. The higher the

liquidity, the lower the price volatility, others things being equal (Bessem-

binder and Kaufman, 1997; Chordia et al., 2001; Chordia et al., 2002). In our

case, the 5-minute squared returns proxy for volatility (variance) following

the realized volatility literature (Andersen and Bollerslev, 1998).

We use the LASSO’s residuals as filtered relative spread and quoted depth

liquidity measures that are used as model inputs in the second step to esti-

mate resiliency. The residuals from the LASSO relative spread and quoted
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depth measures are orthogonalized to lagged independent variables that the

LASSO deems to be important in predicting the liquidity measures at the

5-minute horizon. These residuals then represent the unpredictable changes

in the liquidity measures.

In a second step, the LASSO’s residuals are fed into Equation (2) and

recursive regressions are run for each trading day within our sample, yielding

daily spread-based and depth-based liquidity resiliency measures across all

four maturity segments for all countries. That is, the LASSO is not directly

used to measure resiliency, but instead is used as a useful purification tool

that yields more refined spread-based and depth-based liquidity proxies. In

the sections that follow we analyse and compare the two resiliency measures,

showing that they can be used interchangeably in the measurement of liquid-

ity resiliency regardless of whether they are constructed in terms of spreads

or depths.

4. Data

We employ a rich high-frequency dataset provided by MTS (Mercato dei

Titoli di Stato), Europe’s premier interdealer electronic fixed-income market

for euro-denominated government bonds. MTS group counts to over 500

counterparties and 2,000 traders trading an average trading volume exceeding

EUR 130 billion across all MTS platforms. Our dataset spans the dates from

January 2008 to December 2013 and includes a tranquil period (January 2008
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to October 2009) and a crisis period (November 2009 to December 2013)4.

It consists of the following core and periphery countries: Austria, Belgium,

Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal,

and Spain. It contains the three best bid and ask quotations throughout

each trading day, time-stamped to the nearest second.

We focus on benchmark fixed coupon-bearing government bonds from the

domestic MTS markets across four time-to-maturity segments: 2-, 5-, 10-,

and 30-year, similar to O’Sullivan and Papavassiliou (2020, 2021). We have

discarded quotes recorded outside regular trading hours, i.e. from 8:15 am to

5:30 pm CET, as well as pre-sessional and end-of-day quotations and quotes

with zero and negative bid-ask spreads.

We artificially construct relative spread and quoted depth liquidity mea-

sures following O’Sullivan and Papavassiliou (2020): relative spread is defined

as the best bid-ask spread divided by the midpoint of the bid and ask quotes,

whilst quoted depth is defined as best bid size plus best ask size, where size

denotes the quantity of securities bid or offered for sale at the posted bid and

ask prices. We prefer to use midpoints of bid-ask quotes instead of trans-

4The U.S. global crisis didn’t have a significant impact on euro area sovereign bond
markets, as discussed in Dellas and Tavlas (2013) and O’ Sullivan and Papavassiliou (2020),
justifying our selection to use the period January 2008 until October 2009 as the pre-crisis
sample. We consider November 2009 as the beginning of the European sovereign debt crisis
in line with Claeys and Vašíček (2014), De Santis (2014), and O’Sullivan and Papavassiliou
(2020). It is a well-known fact that the crisis peaked between 2010 and 2012 and it took
more than two years for the crisis to subside in 2013. It was a lengthy and severe financial
crisis that exacerbated investor anxiety due to Europe’s failure to act decisively during
the crisis.
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action prices in order to avoid bid-ask bounce effects (Bandi and Russell,

2006). We also winsorize our liquidity measures by 95 percent in order to

weed out the morning and afternoon spikes and thus avoid extreme values

in our resiliency estimates5. We also impose a non-negativity truncation on

the resiliency measurements to avoid resiliency taking on negative values.

We construct 5-minute returns from the midpoint of the continuously

recorded bid and ask quotes and daily realized volatility measures for each

benchmark security by the summation of squared 5-minute intraday returns

(Andersen and Bollerslev, 1998; Andersen et al., 2001). Our empirical anal-

ysis places emphasis on Germany (DE) and the Netherlands (NL) as two

representative markets from the core eurozone region, and Italy (IT) and

Spain (ES) as the two most liquid markets in the periphery euro area region.

We also obtain sovereign credit default swap (CDS) spreads for all countries

in our sample at all four maturities from Markit.

5. Empirical findings and discussion

In Section 5.1 we present and discuss descriptive statistics of the OLS and

LASSO-based resiliency measures. In Section 5.2 we use Vector Autoregres-

sion Analysis (VAR) to study the joint dynamics among resiliency, volatility,

returns, and credit default swap (CDS) spreads, while in Section 5.3 we study

5We also experimented with a 99% winsorization threshold as well as with no winsoriza-
tion. Tables A1-A4 in the Appendix show descriptive statistics that use these alternative
specifications. Our empirical findings do not change dramatically when these alternative
specifications are used.
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commonality in resiliency.

5.1. Descriptive statistics

Table 1 displays the mean relative spread resiliency for Germany (DE),

Netherlands (NL), Italy (IT), and Spain (ES) across the 2-, 5-, 10-, and

30-year maturity segments during both pre-crisis (January 2008 until Octo-

ber 2009) and crisis periods (November 2009 until December 2013). Panel A

of Table 1 shows the OLS-based relative spread resiliency estimates, whilst

Panel B shows the corresponding estimates using the combined approach

that includes the LASSO model. The table also displays the mean values

of the conventional relative spread liquidity measures in order to facilitate

discussion. The following observations are apparent. First, with regard to

resiliency, there is a clear liquidity deterioration for Germany in the crisis, as

both resiliency estimates drop from their pre-crisis levels, however, conven-

tional relative spreads for Germany are lower in the crisis relative to their

pre-crisis values indicating that liquidity is improved for German bonds as

they benefit from their safe haven status.

The results concerning Dutch resiliency are more clear-cut as resiliency

clearly increases in the crisis across both ends of the yield curve, indicating

that liquidity improved for the Dutch market. This finding is in agreement

with the drop in Dutch relative spreads during the euro area crisis which

denotes increases in liquidity. Relative spreads for Italy and Spain increase

significantly during the crisis confirming previous findings that periphery
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countries experienced major liquidity dry-ups due to flight-to-liquidity and

flight-to-quality effects (O’Sullivan and Papavassiliou, 2020). It appears that

resiliency for Spain drops consistently across the maturity spectrum in the

crisis, especially for the LASSO-based resiliency, confirming the drop in rela-

tive spreads. Results for Italy are mixed, as it appears that the short 2-year

and the longer term 30-year benchmarks were more vulnerable than their 5-

and 10-year counterparts as their liquidity resiliency was adversely affected

during the crisis. Figure 1 provides a visual illustration of the LASSO-based

relative spread resiliency for all four countries.

Table 2 displays the mean quoted depth resiliency along with conventional

quoted depth liquidity measures. There is clear evidence of resiliency deteri-

oration during the crisis for Germany and Spain, which is also reflected in the

lower quoted depth liquidity for all maturities. Results for the Netherlands

and Italy are less clear-cut. Resiliency levels clearly increase for the Dutch

market for all benchmarks although quoted depth drops for the medium-term

bonds. On the other hand, the Italian medium-term bonds exhibit higher

resiliency in the crisis than the 2- and 30-year bonds, however, the 30-year

bond resiliency levels remain unchanged in the crisis commensurate with

the Italian 30-year benchmark being the most informative and liquid in the

eurozone (Dufour and Nguyen, 2013; Papavassiliou and Kinateder, 2021).

Tables 3-4 depict a more detailed one-on-one comparison between OLS

and LASSO-based liquidity resiliency. In Table 3, we first note that the mean

values of LASSO-based relative spread resiliency are higher than the corre-
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sponding values of OLS-based resiliency, regardless of the bonds’ maturities.

LASSO-based spread resiliency takes on higher maximum and minimum val-

ues than those of the OLS-based resiliency. The standard deviation of the

OLS-based relative spread resiliency is lower than that of the LASSO-based

resiliency in most cases, regardless of maturity and country of origin, show-

ing that OLS estimates yield a less volatile and noisy resiliency measure.

OLS-based resiliency is also less serially correlated than the LASSO-based

resiliency in most cases, as evidenced by Ljung-Box Q tests up to the 12th

order. In most cases the Jarque-Bera statistic takes on much smaller values

for the LASSO than for the OLS-based resiliency, indicating that the puri-

fied LASSO-based resiliency measure is closer to being normally distributed.

According to standard ADF unit root tests, all liquidity series are clearly

level stationary.

The results shown in Table 4 are mixed, however, we still get liquidity

resiliency measures that are highly autocorrelated and stationary at level.

Quoted depth resiliency increases as we move from the 2-year shorter term

benchmark to the 30-year longer term benchmark, albeit more consistently

than relative spread resiliency, especially in the pre-crisis period. Related

research by Dick-Nielsen et al. (2012) shows that the liquidity premium

increases with maturity, in fact, it can double for long maturity bonds com-

pared to short maturity ones. This liquidity premium compensates investors

for bearing securities with higher bid-ask spreads and lower quoted depths.

However, it is interesting to note that liquidity resiliency improves with matu-
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rity thereby making investments in longer maturity bonds safer when viewed

from this dimension of liquidity.

In order to better understand the relationship among spreads, depth,

spread resiliency, and depth resiliency we calculate the mean correlations of

those measures during calm and crisis periods presented in Table 56. Spreads

and depths are negatively correlated with each other as expected, showing

that when liquidity improves in the marketplace depth proxies become larger

and spreads contract. Spread and depth resiliency, regardless of whether it

is estimated using OLS or LASSO-based methods, is negatively correlated

with spreads and positively correlated with depths in most cases, as ex-

pected. This finding indicates that resiliency becomes higher when the tight-

ness (price) and depth (quantity) dimensions of liquidity are high. These

correlations among spread, depth, and resiliency are quite small and hardly

exceed 14 percent in absolute terms. This is actually great news for our re-

siliency measures as it indicates that the information contained in resiliency

is unique and cannot be captured by the spread and depth liquidity dimen-

sions.

Correlations between the OLS-based and LASSO-based resiliency mea-

sures are also very small and hardly exceed 7 percent in absolute terms,

showing that the information contained in each of those measures is unique

6For the sake of space we report correlations of the German 10-year benchmark only,
as the correlations of remaining maturities do not differ dramatically from those of the
10-year benchmark. The full set of correlations is available from the authors upon request.
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and is not reflected in the other. Interestingly, the magnitude of correlations

does not differ substantially between the pre-cisis and the crisis period, in-

dicating that market resiliency is relatively stable over time (also apparent

from Tables 1-4). This finding can have important policy implications es-

pecially with regard to the speed required for liquidity to revert back to its

long-term value after various financial shocks that occur in turbulent peri-

ods. The above findings are in agreement with those recorded by Kempf et

al. (2015) from the stock market who document a similar relationship among

resiliency, spreads, and depths.

5.2. Vector Autoregression Analysis

In this section we use Vector Autoregression Analysis (VAR) to study the

joint dynamics and explore the intertemporal associations among resiliency,

volatility, returns, and credit default swap (CDS) spreads. It would be of

substantial interest to determine the multivariate relationships between re-

siliency and the latter three variables which haven’t been explored in ear-

lier literature. Judging from previous research that focused on the spread

and depth liquidity dimensions, there is good reason to expect either uni-

directional or bidirectional causalities between those measures. Previous

research has shown that there is an inverse relationship between liquidity

and volatility, that is, during periods of liquidity improvements price volatil-

ity decreases, other things being equal (Harris, 1994; Chordia et al., 2001;

Chordia et al., 2002). Along these lines, Benston and Hagerman (1974) and
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Duffie et al. (2007) document bidirectional causalities between liquidity and

volatility, confirming their inverse relationship which can be due to increased

inventory risk.

The relationship between asset prices and liquidity is well documented.

Amihud and Mendelson (1986) find bidirectional causalities between liquidity

and returns. Liquidity is priced in the marketplace and the effects of liquidity

on asset prices are significant from a statistical and economical point of view

(Amihud et al., 2005). Liquidity is also closely related to sovereign credit risk

especially during periods of stress (Augustin, 2018). It remains to be seen

whether the aforementioned relationships carry over to liquidity resiliency.

In the analysis that follows, we use a VAR model of the following form:

LIQ
S/D
t = β0 +

k∑
P=1

βpLIQ
S/D
t−p +

k∑
p=1

γpRVt−p +
k∑

p=1

δpRETt−p +
k∑

p=1

ωpCDSt−p + εt

(4)

RVt = γ0 +
k∑

P=1

γpRVt−p +
k∑

p=1

δpRETt−p +
k∑

p=1

ωpCDSt−p +
k∑

p=1

βpLIQ
S/D
t−p + εt

(5)
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RETt = δ0 +
k∑

P=1

δpRETt−p +
k∑

p=1

γpRVt−p +
k∑

p=1

ωpCDSt−p +
k∑

p=1

βpLIQ
S/D
t−p + εt

(6)

CDSt = ω0 +
k∑

P=1

ωpCDSt−p +
k∑

p=1

δpRETt−p +
k∑

p=1

γpRVt−p +
k∑

p=1

βpLIQ
S/D
t−p + εt

(7)

where LIQ
S/D
t denotes liquidity resiliency estimated from spreads (S) or

depths (D), RVt denotes realized volatility, RETt denotes bond returns, and

CDSt denotes credit default swap spreads. We choose the optimal number

of lags in the above equations on the basis of the Akaike information crite-

rion. Similar to Chordia et al. (2005) and Goyenko et al. (2011) we use

a VAR variable ordering that places volatility before returns, while liquid-

ity resiliency is placed after returns. In Section 5.2.1. we present pairwise

Granger causality tests between the endogenous variables of the VAR. In

Section 5.2.2. we offer more robust evidence on the joint dynamics implied

by the VAR model using Impulse Response Functions.

5.2.1. Granger causalities

Tables 6-9 present the Granger causality results. In Table 6 we document

more statistically significant causalities for spread-based resiliency than depth-
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based resiliency for German bonds. We find strong bidirectional causalities

between CDS spreads and resiliency for the 2- and 10-year benchmarks, as

well as between volatility and resiliency for the 10-year benchmark. The

strong association between CDS spreads and resiliency is apparent during

both pre-crisis and crisis periods as expected, confirming the importance

of sovereign credit risk in driving liquidity. We also document strong uni-

directional causalities between resiliency and returns, mainly running from

resiliency to returns during the crisis period. This result offers preliminary

evidence that liquidity resiliency is a priced variable and is in line with the

findings in Goyenko et al. (2011) in their study of the U.S. Treasury mar-

ket. Statistically significant bidirectional causalities between CDS spreads

and resiliency for the Dutch market are also reported in Table 7. One-way

causalities are also evident between resiliency, returns, and volatility, regard-

less of how resiliency is estimated. The presence of strong causalities is also

apparent in the Italian market (shown in Table 8) mainly for spread-based

resiliency which Granger causes the other three bond attributes across the

maturity spectrum.

The picture is more clear-cut for Spanish bonds in Table 9. Strong

two-way and one-way causalities are documented between spread-based and

depth-based resiliency and the other three bond attributes confirming pre-

vious studies that focus on the tightness and depth dimensions of liquidity.

Although resiliency exhibits different features from conventional spread and

depth liquidity proxies, it demonstrates strong intertemporal relationships
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with sovereign credit risk, volatility, and sovereign bond returns. The impor-

tance of CDS spreads in causing resiliency is highlighted in the crisis period,

with statistically significant two-way Granger causalities being the result of

liquidity dry-ups that took place at the time. This finding points to a feed-

back relationship between CDS spreads and bond liquidity resiliency that

can lead to liquidity spirals during crisis periods (Brunnermeier and Ped-

ersen, 2009). We investigate these dynamics further in the next section on

Impulse Response Functions7.

5.2.2. Impulse Response Functions

In this section we employ Impulse Response Functions (IRFs) that may shed

further light on the joint dynamics of liquidity resiliency with volatility, re-

turns, and CDS spreads. IRFs make it possible to determine the duration of

the effects of innovations from the lags of the engogenous variables on each

dependent variable. Following Equations (4)-(7), we apply one standard de-

viation unit shock to the error of each VAR model equation and, in a second

step, IRFs trace the effects of the shock in the VAR system. For brevity

we focus on the LASSO-based resiliency, however, we find similar results for

the OLS-based resiliency. We have selected to report IRFs for the 10-year

German and Spanish benchmark bonds only, as including all countries and

7Despite the popularity of Granger causality, the validity of this framework for inferring
causal relationships among time series has remained a topic of continuous debate (Shojaie
and Fox, 2022). Although Granger causality can lead to useful insights about interactions
among variables observed over time, claims about causality should be treated with caution.
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maturity segments would render the analysis overly detailed.

Figures (2)-(5) display the IRFs for the German 10-year benchmark. We

apply bootstrapped 95 percent confidence intervals with 2,500 bootstrap

replications to generate the shocks. The plot’s centre line is the impulse

response function, which traces the shock in the endogenous variables. The

outer lines are the 95 percent bootstrapped confidence intervals, which aid in

inferring the statistical significance of the shock to the endogenous variables.

In Figures 2(a) and 2(b) spread resiliency increases by roughly 0.16 standard

deviations on the first day following a shock to resiliency, and the response

fades away after the third day during the pre-crisis period. The effect of re-

siliency innovations on its own lags is positive and statistically significant for

the first two days following the shock. CDS spread innovations significantly

increase resiliency by 0.02 standard deviations on day one but this reduces

and becomes insignificant on day two after the shock. However, from day

four onwards, CDS spread shocks on resiliency take on statistically signifi-

cant negative values and persist even after ten days, confirming the previous

results from the Granger causality analysis. The effect of volatility innova-

tions on resiliency is positive on day one but not significant and from day

three onwards it drops to zero. Return innovations initially reduce resiliency

by nearly 0.01 standard deviations but the effect is insignificant and takes

on zero values from day three onwards. Resiliency shocks increase volatility

and CDS spreads and reduce returns but only the impact on CDS spreads is

significant at a one day lag.
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Figures 3(a) and 3(b) indicate that shocks to depth-based resiliency sig-

nificantly impact its own lagged values. However, the effect on the other

endogenous variables is statistically negligible. For example, a positive unit

standard deviation shock to depth-based resiliency reduces volatility by 0.02

standard deviation units on day one and this impact is marginally significant

as it dies-off from day two onwards. Shocks to depth-based resiliency reduce

volatility on day one but the impact is marginally significant and fades away

after the first day.

Figures 4(a) and 4(b) present IRFs in the crisis period with similar results

to those of the pre-crisis period. Innovations to resiliency increase resiliency

by around 0.16 standard deviation units on day one following a shock. This

reduces and fades away from day three onwards. Notably, the effect is sig-

nificant on day one and day two. This finding is in agreement with that of

Goyenko et al.(2011) who find that liquidity shocks on their lagged values are

significant in the U.S. Treasury market. Innovations to CDS spreads forecast

an initial significant increase in resiliency that is followed by a decrease in re-

siliency that becomes significant from day four onwards. CDS spread shocks

have a negative impact on resiliency in the long run as rising CDS spreads

indicate higher economic uncertainty with reduced resiliency. The negative

effect of CDS spreads on liquidity resiliency is in agreement with previous

studies by Das et al. (2014), Calice et al. (2013), Pelizzon et al. (2016), and

Czech (2021). Shocks to spread-based resiliency significantly increase CDS

spreads on day one but the impact subsequently dies away.
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In Figure 5(a) it is evident that resiliency positively impacts its own

lagged innovations up to day three before it fades away. Volatility, returns

and CDS shocks negatively impact quoted depth resiliency but only the re-

turns shock impact is significant at the first lag. In Figure 5(b) we observe

that day one shocks to resiliency negatively impact on volatility, returns and

CDS spreads, however, the effects are statistically insignificant.

Figures (6)-(9) display the IRFs for the Spanish 10-year benchmark. In

Figures 6(a) and 6(b) spread resiliency increases by roughly 0.16 standard

deviations on the first day following a resiliency shock, and the response fades

away after the third day during the pre-crisis period. Volatility shocks do not

impact resiliency significantly but returns shocks positively impact resiliency

from the third lag onwards. CDS shocks negatively impact resiliency high-

lighting the reduction in resiliency when credit conditions deteriorate. Re-

siliency shocks do not impact volatility, returns or CDS spreads. Figures 7(a)

and 7(b) show that only resiliency shocks impact resiliency when resiliency is

measured with quoted depths with shocks to resiliency (other variables) not

impacting the other variables (resiliency). Figures 8(a) and 8(b) depict IRFs

for spread resiliency in the crisis period. We observe that resiliency (CDS)

shocks positively (negatively) impact resiliency but that resiliency shocks do

not impact other variables. These relations remain the same for quoted depth

resiliency in Figures 9(a) and 9(b). Overall, for Spanish 10-year bonds, we

find that resiliency is most closely linked to CDS spreads with shocks to CDS

spreads significantly decreasing resiliency.
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5.3. Commonality in resiliency

The seminal papers on commonality in liquidity are those of Chordia et al.

(2000), Hasbrouck and Seppi (2001), and Huberman and Halka (2001). All

these studies find evidence of commonality in liquidity for U.S. listed stocks.

O’Sullivan and Papavassiliou (2020) were the first to analyse commonality

in liquidity in the context of bond markets, and in particular, the European

sovereign bond market. Their results indicate that commonality is weaker

during the European debt crisis period for both core and periphery countries,

whilst it appears stronger for periphery than for core countries and is more

pronounced for spread-based than it is for depth-based liquidity proxies. In a

later study Panagiotou et al. (2022) also find strong commonality in liquidity

for European sovereign bond markets. Therefore, we investigate whether the

presence of common factors in spread and depth liquidity proxies carries over

to resiliency liquidity proxies.

We use principal components analysis (PCA) to study commonality in

our LASSO and OLS-based resiliency measures. Prior to applying PCA we

standardize our series in order to remove deterministic time-of-day effects

and to prevent the first principal component from being dominated by the

most volatile variable. As our input variables are level stationary no trans-

formation into first differences is needed before PCA is applied. Similar to

Hasbrouck and Seppi (2001) we prefer to decompose the sample covariance

matrix instead of the correlation matrix, that is, we transform the variances

of the principal components into a covariance matrix of the original system
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using the factor weights.

Following O’Sullivan and Papavassiliou (2020) we use two sets of data.

First, we use a "full set" of data from the following 11 core and periph-

ery countries: Austria, Belgium, Finland, France, Germany, Greece, Ire-

land, Italy, Netherlands, Portugal, and Spain. In the full set of data we

employ spread-based resiliency and depth-based resiliency for each country

across four maturity segments. We also use an "index set" of data in which

we equally weight each individual spread or depth-based resiliency measure

available at a given maturity, enabling us to average away individual country

effects.

The PCA results are presented in Tables 10 and 11 where the proportion

of total variation that is explained by the first three principal components

is used as a metric to measure commonality in liquidity resiliency. Panel

A in Table 10 presents the results for relative spread resiliency while Panel

B presents the corresponding results for quoted depth resiliency. It is ap-

parent that there exists strong commonality in resiliency in both pre-crisis

and crisis periods for the periphery euro area countries (Greece, Ireland,

Italy, Portugal, and Spain) regardless of how resiliency is measured. That is,

we document strong commonalities in both our spread and depth resiliency

proxies, especially for the index set of data. Kempf et al. (2015) also docu-

ment strong commonality in resiliency for FTSE-100 stocks. In the pre-crisis

period the first principal component of the LASSO-based spread resiliency

explains nearly 30 percent of the variation in the full cross-section of spread
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resiliency considered, while the first principal component from the index data

explains nearly 88 percent of total variation. The proportion of variation ex-

plained by the first three principal components amounts to 70.51 percent for

the full set and 98.14 for the index set, respectively. The proportion of vari-

ation explained by the first three principal components in the crisis period is

71.59 percent for the full set and 97.91 percent for the index, showing that

the magnitude of commonality has remained almost unchanged from its pre-

crisis levels. Commonality in the OLS-based spread resiliency is also high

in both periods, however, the proportion of variation explained by the first

three principal components for the full set hardly exceeds 30 percent, thus it

is much lower than that of the LASSO-based spread resiliency.

Panel B of Table 10 presents the corresponding PCA results for quoted

depth resiliency. The proportion of variation explained by the first three

principal components for the index set pre-crisis is 87.41 percent for the

LASSO-based resiliency and 82.44 percent for the OLS-based resiliency in-

dicating the presence of strong commonalities in quoted depth resiliency.

These figures slightly increase in the crisis period showing that the liquidity

of periphery countries although impaired (shown in Table 2), demonstrates

high depth resiliency. This may be due to the high selling pressure on the

periphery benchmarks as investors were looking for safety and were rebalanc-

ing their portfolios towards the less risky benchmark securities of core euro

area countries. Commonality appears to be weaker, although still of good

value, in the full set taking on values that don’t exceed 40 percent pre-crisis
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and 45 percent during the crisis.

Panel A of Table 11 presents the PCA results for spread resiliency of core

euro area countries (Austria, Belgium, Finland, France, Germany, Nether-

lands). Commonality of spread resiliency is lower than that documented in

the periphery region confirming the findings of O’Sullivan and Papavassil-

iou (2020). These findings can also be related to the work of Karolyi et al.

(2012) who find higher commonality when prices decline and lower common-

ality when prices increase for global equity markets. The results reveal strong

commonalities for the index set using both the LASSO-based and OLS-based

approaches that take on values between 84 and 97 percent. Notably, com-

monality increases slightly in the crisis period for core countries (from 96.15

to 96.99 percent for the LASSO-based spread resiliency and from 84.10 to

86.18 percent for the OLS-based resiliency) in contrast to the commonality

of periphery countries which slightly declines in the crisis. The proportion

of variation explained by the first three principal components for the full set

LASSO-based resiliency is 50.98 percent pre-crisis and drops slightly to 50.44

percent during the crisis period. The variation explained for the OLS-based

spread resiliency is much lower than that of the LASSO-based resiliency and

slightly declines during the crisis from 25.66 to 23.45 percent.

The PCA results for quoted depth resiliency shown in Panel B of the

table document small declines in commonality in the crisis in contrast to the

corresponding figures for periphery countries. The proportion of variation

explained by the first three principal components for the index set exceeds
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80 percent both in the pre-crisis and crisis periods and across the LASSO and

OLS-based resiliency estimates. The substantially lower commonality of the

full set than that of the index is due to the fact that individual country effects

are averaged away for the index set but not for the full set, thus elevating

commonality to higher levels when each country’s spread and depth resiliency

measures available at a given maturity are equally weighted.

In summary, our findings reveal significant commonalities in spread and

depth-based resiliency, however, commonality in spread resiliency is higher

than depth resiliency in both core and periphery countries and during crisis

and calm periods. Moreover, we provide evidence that commonality in re-

siliency is stronger for periphery countries in the crisis period during which

the liquidity of those countries was significantly impaired and liquidity risk

was of particular importance.

6. Conclusions

We offer new insights into liquidity resiliency using a high-frequency dataset

from the MTS sovereign bond markets. We measure resiliency using an OLS

approach and a combination of an OLS approach and the LASSO machine

learning approach and show that these methods can be used interchange-

ably in the measurement of market resiliency regardless of whether resiliency

is estimated in terms of spreads or depths. We find that the information

contained in resiliency is unique and independent of other dimensions of

liquidity. We find significant intertemporal relationships between resiliency
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and sovereign credit risk, volatility, and sovereign bond returns, as well as

strong commonalities in resiliency which are greater for spread-based than

depth-based resiliency proxies.

Liquidity resiliency is of paramount importance today given that the

speed of the order book replenishment mechanism has increased. Resiliency

enables market participants to rebalance their portfolios in light of illiquidity

episodes that occur more frequently in today’s financial markets, in order to

minimize trading costs and slippage. Market resiliency is also essential to

institutional investors who wish to manage effectively their order flow. Our

findings on commonality in resiliency have an impact on market quality as

they indicate that the liquidity replenishment process for sovereign bonds can

have contagious, market-wide effects, especially during periods of increased

market uncertainty.

There are several policy implications from this research. Resiliency is im-

portant to market participants and regulators. Traders and arbitrageurs in

limit order book markets face execution risk and take seriously into consid-

eration liquidity risk when they buy and sell securities. Stock exchanges and

alternative trading venues (including OTC trading) have a genuine interest in

understanding the mechanics of limit order books in order to attract liquid-

ity. Likewise, regulators need to understand liquidity resiliency to monitor

market quality and stability and to design and implement new regulations.

It is hoped that the current analysis can be useful for portfolio managers and

policymakers who design and implement portfolio diversification strategies
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and new financial market regulations.

Acknowledgements

We are grateful to the Editor, Professor Jonathan Batten, and two anony-

mous referees for their constructive comments and suggestions. We would

like to thank Botao Wu, Sebeom Oh, and conference participants at the An-

nual Financial Market Liquidity Conference 2022 in Budapest, Hungary, and

at the First Annual Meeting of the International Society for the Advance-

ment of Financial Economics (ISAFE-2022) in Ho Chi Minh City, Vietnam.

O’Sullivan would like to acknowledge the support of New York University

(NYU) Tandon’s Finance and Risk Engineering department for granting ac-

cess to the Markit database. Papavassiliou would like to acknowledge the

support of University College Dublin for financial assistance under grant

numbers SF1258 and R18254. All errors remain our own.

40



Appendix A.

Table A1: Descriptive statistics.

Panel A: OLS-based resiliency - Relative Spread
Maturity Period DE NL IT ES
2-Year Pre-crisis 0.247 0.233 0.276 0.244

Crisis 0.240 0.272 0.217 0.230
5-Year Pre-crisis 0.282 0.278 0.244 0.258

Crisis 0.254 0.309 0.289 0.257
10-Year Pre-crisis 0.310 0.288 0.284 0.279

Crisis 0.274 0.357 0.342 0.289
30-Year Pre-crisis 0.278 0.281 0.320 0.304

Crisis 0.269 0.341 0.304 0.289
Panel B: LASSO-based resiliency - Relative Spread
Maturity Period DE NL IT ES
2-Year Pre-crisis 0.504 0.244 0.279 0.251

Crisis 0.212 0.276 0.219 0.233
5-Year Pre-crisis 0.240 0.293 0.244 0.259

Crisis 0.200 0.313 0.289 0.260
10-Year Pre-crisis 0.280 0.294 0.284 0.286

Crisis 0.230 0.361 0.344 0.293
30-Year Pre-crisis 0.277 0.287 0.321 0.300

Crisis 0.230 0.346 0.307 0.295

Notes: Panel A shows the mean OLS-based relative spread resiliency for Germany (DE),
Netherlands (NL), Italy (IT), and Spain (ES). Relative spread is defined as the best bid-ask
spread divided by the midpoint of the bid and ask quotes. The OLS-based relative spread
resiliency is estimated according to Equation (2). The pre-crisis period spans the dates
from January 2008 to October 2009 whilst the crisis period extends from November 2009
to December 2013. We use benchmark securities across four maturity segments, i.e. 2-,
5-, 10-, and 30-year maturity. Panel B shows the corresponding statistics for the LASSO-
based relative spread resiliency which is estimated according to Equations (2) and (3)
following a two-stage regression approach. The liquidity measures have been winsorized
by 99% in order to avoid extreme values in the resiliency estimates.
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Table A2: Descriptive statistics.

Panel A: OLS-based resiliency - Quoted Depth
Maturity Period DE NL IT ES
2-Year Pre-crisis 0.392 0.445 0.484 0.428

Crisis 0.393 0.454 0.416 0.393
5-Year Pre-crisis 0.471 0.504 0.518 0.532

Crisis 0.425 0.562 0.535 0.522
10-Year Pre-crisis 0.422 0.489 0.532 0.527

Crisis 0.389 0.573 0.545 0.449
30-Year Pre-crisis 0.450 0.643 0.521 0.566

Crisis 0.458 0.681 0.520 0.503
Panel B: LASSO-based resiliency - Quoted Depth
Maturity Period DE NL IT ES
2-Year Pre-crisis 0.345 0.459 0.488 0.438

Crisis 0.358 0.458 0.420 0.402
5-Year Pre-crisis 0.373 0.519 0.519 0.487

Crisis 0.337 0.567 0.538 0.489
10-Year Pre-crisis 0.371 0.508 0.532 0.536

Crisis 0.339 0.576 0.548 0.455
30-Year Pre-crisis 0.340 0.653 0.522 0.571

Crisis 0.333 0.687 0.522 0.512

Notes: Panel A shows the mean OLS-based quoted depth resiliency for Germany (DE),
Netherlands (NL), Italy (IT), and Spain (ES). Quoted depth is defined as best bid size
plus best ask size, where size denotes the quantity of securities bid or offered for sale at the
posted bid and ask prices. The OLS-based quoted depth resiliency is estimated according
to Equation (2). The pre-crisis period spans the dates from January 2008 to October
2009 whilst the crisis period extends from November 2009 to December 2013. We use
benchmark securities across four maturity segments, i.e. 2-, 5-, 10-, and 30-year maturity.
Panel B shows the corresponding statistics for the LASSO-based quoted depth resiliency
which is estimated according to Equations (2) and (3) following a two-stage regression
approach. The liquidity measures have been winsorized by 99% in order to avoid extreme
values in the resiliency estimates.
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Table A3: Descriptive statistics.

Panel A: OLS-based resiliency - Relative Spread
Maturity Period DE NL IT ES
2-Year Pre-crisis 0.259 0.253 0.291 0.260

Crisis 0.249 0.296 0.229 0.246
5-Year Pre-crisis 0.314 0.320 0.276 0.292

Crisis 0.266 0.350 0.307 0.278
10-Year Pre-crisis 0.339 0.328 0.315 0.311

Crisis 0.290 0.421 0.359 0.307
30-Year Pre-crisis 0.290 0.297 0.337 0.315

Crisis 0.280 0.378 0.323 0.305
Panel B: LASSO-based resiliency - Relative Spread
Maturity Period DE NL IT ES
2-Year Pre-crisis 0.531 0.265 0.294 0.268

Crisis 0.240 0.298 0.231 0.249
5-Year Pre-crisis 0.268 0.334 0.276 0.294

Crisis 0.225 0.354 0.306 0.280
10-Year Pre-crisis 0.308 0.335 0.315 0.320

Crisis 0.258 0.425 0.361 0.311
30-Year Pre-crisis 0.309 0.302 0.339 0.312

Crisis 0.255 0.381 0.326 0.311

Notes: Panel A shows the mean OLS-based relative spread resiliency for Germany (DE),
Netherlands (NL), Italy (IT), and Spain (ES). Relative spread is defined as the best bid-
ask spread divided by the midpoint of the bid and ask quotes. The OLS-based relative
spread resiliency is estimated according to Equation (2). The pre-crisis period spans the
dates from January 2008 to October 2009 whilst the crisis period extends from November
2009 to December 2013. We use benchmark securities across four maturity segments,
i.e. 2-, 5-, 10-, and 30-year maturity. Panel B shows the corresponding statistics for the
LASSO-based relative spread resiliency which is estimated according to Equations (2) and
(3) following a two-stage regression approach. The liquidity measures are not winsorized.
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Table A4: Descriptive statistics.

Panel A: OLS-based resiliency - Quoted Depth
Maturity Period DE NL IT ES
2-Year Pre-crisis 0.399 0.451 0.489 0.435

Crisis 0.401 0.461 0.425 0.401
5-Year Pre-crisis 0.475 0.510 0.525 0.539

Crisis 0.429 0.570 0.541 0.532
10-Year Pre-crisis 0.426 0.493 0.537 0.533

Crisis 0.394 0.580 0.551 0.459
30-Year Pre-crisis 0.456 0.648 0.529 0.574

Crisis 0.466 0.687 0.527 0.511
Panel B: LASSO-based resiliency - Quoted Depth
Maturity Period DE NL IT ES
2-Year Pre-crisis 0.350 0.465 0.493 0.444

Crisis 0.373 0.465 0.429 0.410
5-Year Pre-crisis 0.377 0.524 0.526 0.494

Crisis 0.342 0.575 0.544 0.498
10-Year Pre-crisis 0.376 0.513 0.538 0.542

Crisis 0.343 0.583 0.554 0.464
30-Year Pre-crisis 0.347 0.659 0.531 0.579

Crisis 0.337 0.693 0.530 0.521

Notes: Panel A shows the mean OLS-based quoted depth resiliency for Germany (DE),
Netherlands (NL), Italy (IT), and Spain (ES). Quoted depth is defined as best bid size
plus best ask size, where size denotes the quantity of securities bid or offered for sale at the
posted bid and ask prices. The OLS-based quoted depth resiliency is estimated according
to Equation (2). The pre-crisis period spans the dates from January 2008 to October
2009 whilst the crisis period extends from November 2009 to December 2013. We use
benchmark securities across four maturity segments, i.e. 2-, 5-, 10-, and 30-year maturity.
Panel B shows the corresponding statistics for the LASSO-based quoted depth resiliency
which is estimated according to Equations (2) and (3) following a two-stage regression
approach. The liquidity measures are not winsorized.
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Table 1: Descriptive statistics.

Panel A: OLS-based resiliency
Relative Spread Resiliency Relative Spreads (bps)

Maturity Period DE NL IT ES DE NL IT ES
2-Year Pre-crisis 0.211 0.215 0.259 0.236 8.310 7.975 7.364 18.012

Crisis 0.203 0.239 0.188 0.210 5.480 5.682 24.668 47.313
5-Year Pre-crisis 0.246 0.244 0.224 0.237 9.401 15.622 19.868 29.024

Crisis 0.225 0.261 0.257 0.251 7.580 14.283 36.466 74.672
10-Year Pre-crisis 0.280 0.250 0.265 0.267 11.661 18.973 23.826 34.497

Crisis 0.243 0.285 0.316 0.283 8.651 15.523 31.656 58.319
30-Year Pre-crisis 0.247 0.255 0.294 0.292 57.830 58.023 60.577 77.113

Crisis 0.243 0301 0.275 0.281 41.820 34.141 86.710 158.132
Panel B: LASSO-based resiliency

Relative Spread Resiliency Relative Spreads (bps)
Maturity Period DE NL IT ES DE NL IT ES

2-Year Pre-crisis 0.269 0.646 0.535 0.557 8.310 7.975 7.364 18.012
Crisis 0.264 0.695 0.534 0.479 5.480 5.682 24.668 47.313

5-Year Pre-crisis 0.287 0.636 0.474 0.581 9.401 15.622 19.868 29.024
Crisis 0.250 0.686 0.489 0.516 7.580 14.283 36.466 74.672

10-Year Pre-crisis 0.294 0.641 0.440 0.563 11.661 18.973 23.826 34.497
Crisis 0.280 0.692 0.486 0.511 8.651 15.523 31.656 58.319

30-Year Pre-crisis 0.264 0.643 0.492 0.571 57.830 58.023 60.577 77.113
Crisis 0.283 0.694 0.504 0.515 41.820 34.141 86.710 158.132

Notes: Panel A shows the mean OLS-based relative spread resiliency along with relative
spreads (in basis points) for Germany (DE), Netherlands (NL), Italy (IT), and Spain
(ES). Relative spread is defined as the best bid-ask spread divided by the midpoint of
the bid and ask quotes. The OLS-based relative spread resiliency is estimated according
to Equation (2). The pre-crisis period spans the dates from January 2008 to October
2009 whilst the crisis period extends from November 2009 to December 2013. We use
benchmark securities across four maturity segments, i.e. 2-, 5-, 10-, and 30-year maturity.
Panel B shows the corresponding statistics for the LASSO-based relative spread resiliency
which is estimated according to Equations (2) and (3) following a two-stage regression
approach. The liquidity measures have been winsorized by 95% in order to avoid extreme
values in the resiliency estimates.
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Table 2: Descriptive statistics.

Panel A: OLS-based resiliency
Quoted Depth Resiliency Quoted Depth (million e)

Maturity Period DE NL IT ES DE NL IT ES
2-Year Pre-crisis 0.333 0.435 0.469 0.453 23.134 28.044 21.636 26.924

Crisis 0.356 0.443 0.399 0.394 18.527 28.405 20.933 22.005
5-Year Pre-crisis 0.441 0.497 0.507 0.561 22.513 29.788 23.850 25.619

Crisis 0.410 0.549 0.526 0.523 19.028 26.048 24.041 19.981
10-Year Pre-crisis 0.413 0.482 0.524 0.555 22.898 28.338 23.251 23.908

Crisis 0.377 0.557 0.535 0.450 18.605 23.273 19.036 16.403
30-Year Pre-crisis 0.428 0.636 0.504 0.587 8.804 10.767 8.716 10.201

Crisis 0.428 0.672 0.504 0.499 7.473 11.102 11.094 9.692
Panel B: LASSO-based resiliency

Quoted Depth Resiliency Quoted Depth (million e)
Maturity Period DE NL IT ES DE NL IT ES

2-Year Pre-crisis 0.318 0.508 0.483 0.442 23.134 28.044 21.636 26.924
Crisis 0.315 0.517 0.444 0.441 18.527 28.405 20.933 22.005

5-Year Pre-crisis 0.337 0.563 0.515 0.533 22.513 29.788 23.850 25.619
Crisis 0.329 0.627 0.549 0.549 19.028 26.048 24.041 19.981

10-Year Pre-crisis 0.356 0.539 0.521 0.527 22.898 28.338 23.251 23.908
Crisis 0.325 0.621 0.534 0.491 18.605 23.273 19.036 16.403

30-Year Pre-crisis 0.331 0.651 0.506 0.623 8.804 10.767 8.716 10.201
Crisis 0.324 0.679 0.506 0.534 7.473 11.102 11.094 9.692

Notes: Panel A shows the mean OLS-based quoted depth resiliency along with quoted
depths (in million e) for Germany (DE), Netherlands (NL), Italy (IT), and Spain (ES).
Quoted depth is defined as best bid size plus best ask size, where size denotes the quantity
of securities bid or offered for sale at the posted bid and ask prices. The OLS-based quoted
depth resiliency is estimated according to Equation (2). The pre-crisis period spans the
dates from January 2008 to October 2009 whilst the crisis period extends from November
2009 to December 2013. We use benchmark securities across four maturity segments,
i.e. 2-, 5-, 10-, and 30-year maturity. Panel B shows the corresponding statistics for the
LASSO-based quoted depth resiliency which is estimated according to Equations (2) and
(3) following a two-stage regression approach. The liquidity measures have been winsorized
by 95% in order to avoid extreme values in the resiliency estimates.
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Table 3: Descriptive statistics.

Panel A: Pre-crisis
2-Year
DE NL IT ES
RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

Mean 0.269 0.211 0.646 0.215 0.535 0.259 0.557 0.236
Max. 1.365 1.305 1.406 1.108 1.242 1.110 1.330 1.144
Min. 0.020 0.001 0.113 0.001 0.092 0.001 0.019 0.001
SD 0.159 0.191 0.250 0.158 0.203 0.162 0.274 0.194
Skew. 1.410 1.788 0.324 1.874 0.437 1.491 0.441 1.481
Kurt. 7.943 7.374 2.705 8.815 3.054 6.452 2.465 5.358
Jarque–Bera 620.60 617.26 9.43 925.32 14.69 402.31 19.69 277.09
Q(12) 87.10 185.91 40.67 33.84 52.64 95.81 318.54 28.03
ADF -17.83 -6.41 -17.07 -19.78 -16.95 -12.58 -8.39 -19.47

5-Year
DE NL IT ES
RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

Mean 0.287 0.246 0.636 0.244 0.474 0.224 0.580 0.237
Max. 1.630 0.945 1.368 1.255 1.242 1.084 1.633 1.063
Min. 0.019 0.002 0.121 0.001 0.027 0.012 0.064 0.001
SD 0.174 0.179 0.242 0.177 0.208 0.146 0.285 0.170
Skew. 1.949 1.297 0.241 1.908 0.447 1.627 0.507 1.664
Kurt. 11.641 4.578 2.590 8.932 3.035 7.167 2.739 7.171
Jarque–Bera 1729.71 178.25 7.441 961.91 15.31 540.52 20.33 550.46
Q(12) 101.07 28.91 50.62 39.21 236.15 192.45 235.02 24.27
ADF -8.12 -19.21 -17.33 -9.64 -7.94 -10.79 -8.99 -18.38

10-Year
DE NL IT ES
RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

Mean 0.294 0.280 0.641 0.250 0.440 0.265 0.563 0.267
Max. 0.961 0.947 1.383 1.463 1.218 0.803 1.540 1.174
Min. 0.001 0.008 0.076 0.001 0.057 0.040 0.024 0.001
SD 0.157 0.162 0.246 0.159 0.210 0.143 0.271 0.186
Skew. 1.037 0.998 0.336 1.749 0.588 1.075 0.468 1.778
Kurt. 4.596 3.905 2.685 10.592 3.194 4.043 2.655 7.783
Jarque–Bera 131.86 92.81 10.22 1351.06 27.17 110.46 18.45 686.90
Q(12) 54.07 23.66 47.27 54.99 348.82 221.02 269.10 12.78
ADF -9.13 -19.53 -17.43 -19.76 -7.61 -5.97 -8.73 -19.54

30-Year
DE NL IT ES
RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

Mean 0.264 0.247 0.643 0.255 0.492 0.294 0.571 0.292
Max. 0.912 1.255 1.370 1.036 1.244 0.805 1.503 0.958
Min. 0.032 0.001 0.095 0.001 0.061 0.002 0.008 0.001
SD 0.146 0.143 0.250 0.150 0.217 0.138 0.277 0.171
Skew. 1.050 1.554 0.343 1.098 0.463 0.778 0.452 1.009
Kurt. 4.436 8.632 2.718 4.756 3.011 3.578 2.663 4.271
Jarque–Bera 124.26 800.21 10.24 152.87 16.37 53.28 17.27 110.01
Q(12) 63.92 60.04 53.46 17.58 135.62 30.81 248.57 36.31
ADF -12.13 -20.14 -17.02 -19.63 -15.96 -11.93 -8.77 -19.55
Panel B: Crisis

2-Year
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DE NL IT ES
RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

Mean 0.264 0.203 0.695 0.239 0.534 0.188 0.479 0.210
Max. 0.955 1.262 1.776 0.985 1.416 0.856 1.273 0.928
Min. 0.023 0.001 0.087 0.001 0.034 0.001 0.036 0.001
SD 0.141 0.150 0.234 0.131 0.217 0.114 0.222 0.137
Skew. 1.128 1.719 0.381 1.209 0.732 1.275 0.823 1.454
Kurt. 4.541 7.535 3.414 5.263 3.638 5.689 3.558 6.198
Jarque–Bera 320.94 1431.97 32.74 484.71 111.06 607.26 129.98 826.08
Q(12) 56.37 74.30 136.06 97.28 101.94 211.91 345.58 101.08
ADF -29.14 -28.99 -28.32 -18.63 -29.56 -14.29 -9.88 -14.41

5-Year
DE NL IT ES
RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

Mean 0.251 0.225 0.686 0.261 0.489 0.257 0.516 0.251
Max. 1.018 1.207 1.812 1.004 1.313 0.942 1.790 0.921
Min. 0.021 0.001 0.081 0.001 0.035 0.001 0.018 0.001
SD 0.135 0.166 0.234 0.146 0.218 0.138 0.244 0.145
Skew. 1.309 1.811 0.398 1.157 0.737 0.999 1.048 1.286
Kurt. 5.871 8.016 3.533 4.976 3.661 4.268 4.748 5.278
Jarque–Bera 649.04 1692.28 39.99 409.51 113.77 247.54 320.27 521.84
Q(12) 90.46 30.66 147.36 187.33 367.58 711.83 203.87 113.43
ADF -17.78 -30.41 -13.99 -9.75 -8.37 -3.72 -10.84 -29.06

10-Year
DE NL IT ES
RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

Mean 0.280 0.243 0.692 0.285 0.486 0.316 0.511 0.283
Max. 1.306 1.096 1.829 1.201 1.250 0.922 1.786 1.136
Min. 0.026 0.001 0.088 0.001 0.058 0.001 0.030 0.001
SD 0.145 0.159 0.234 0.151 0.208 0.152 0.238 0.157
Skew. 1.328 1.688 0.394 1.089 0.705 0.930 1.013 1.212
Kurt. 6.347 7.302 3.488 4.865 3.389 4.008 4.561 5.756
Jarque–Bera 785.05 1322.10 37.44 363.49 93.19 198.03 281.06 595.29
Q(12) 74.04 14.38 122.38 141.40 297.14 96.05 217.14 87.72
ADF -28.63 -30.62 -28.46 -19.40 -12.66 -28.42 -10.84 -28.11

30-Year
DE NL IT ES
RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

RS
(LASSO)

RS
(OLS)

Mean 0.283 0.243 0.694 0.301 0.504 0.275 0.515 0.281
Max. 1.315 1.236 1.702 0.971 1.330 1.000 1.836 1.298
Min. 0.026 0.001 0.091 0.001 0.044 0.001 0.002 0.001
SD 0.157 0.147 0.237 0.156 0.222 0.147 0.240 0.162
Skew. 1.501 1.386 0.318 0.997 0.540 1.087 1.002 1.374
Kurt. 7.377 6.438 3.333 4.225 3.217 4.836 4.571 6.625
Jarque–Bera 1212.83 862.08 22.51 242.01 52.94 357.93 278.89 914.65
Q(12) 106.66 9.103 124.57 112.31 534.41 190.30 209.85 85.78
ADF -26.85 -30.08 -27.94 -19.08 -11.42 -17.88 -8.95 -28.36

59



Notes: Panel A shows the Mean, Maximum, Minimum, Standard Deviation, Skewness
and Kurtosis values, Jarque-Bera test for normality, the Ljung-Box portmanteau test for
up to the 12th order Q(12), and the Augmented Dickey-Fuller (ADF) unit root test for
the LASSO-based and the OLS-based relative spread resiliency (RS) for Germany (DE),
Netherlands (NL), Italy (IT), and Spain (ES). Relative spread is defined as the best bid-
ask spread divided by the midpoint of the bid and ask quotes. The OLS-based relative
spread resiliency is estimated according to Equation (2), while the LASSO-based relative
spread resiliency is estimated according to Equations (2) and (3) following a two-stage
regression approach. The pre-crisis period spans the dates from January 2008 to October
2009. All statistics are presented for benchmark securities across four maturity segments,
i.e. 2-, 5-, 10-, and 30-year. Panel B of the table shows the corresponding statistics for
the crisis period which extends from November 2009 to December 2013. The liquidity
measures have been winsorized by 95% in order to avoid extreme values in the resiliency
estimates.
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Table 4: Descriptive statistics.

Panel A: Pre-crisis
2-Year
DE NL IT ES
QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

Mean 0.318 0.333 0.508 0.435 0.483 0.469 0.442 0.453
Max. 1.053 1.044 1.454 1.392 1.193 1.432 1.509 1.620
Min. 0.043 0.001 0.078 0.002 0.054 0.001 0.079 0.001
SD 0.166 0.233 0.202 0.198 0.217 0.223 0.201 0.260
Skew. 0.993 0.603 0.741 0.705 0.769 0.805 0.976 1.011
Kurt. 4.325 2.858 3.892 4.645 3.621 4.212 5.125 4.253
Jarque–Bera 109.71 28.49 55.56 90.73 52.62 78.55 154.33 109.35
Q(12) 37.16 86.42 14.53 22.53 137.46 180.94 47.69 44.78
ADF -17.76 -10.74 -18.43 -20.60 -11.07 -5.65 -8.66 -18.10

5-Year
DE NL IT ES
QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

Mean 0.337 0.441 0.563 0.497 0.515 0.507 0.533 0.561
Max. 1.241 1.185 1.183 1.145 1.187 1.143 1.178 1.400
Min. 0.041 0.001 0.139 0.001 0.074 0.076 0.112 0.001
SD 0.188 0.219 0.179 0.181 0.168 0.169 0.196 0.249
Skew. 1.290 0.423 0.425 0.197 0.473 0.405 0.441 0.476
Kurt. 5.968 3.403 3.123 2.954 3.330 3.091 3.182 3.089
Jarque–Bera 297.76 16.99 13.73 3.03 19.20 12.82 15.07 17.69
Q(12) 18.50 8.17 14.99 9.89 37.11 45.58 56.52 38.10
ADF -18.72 -20.10 -19.76 -20.18 -18.68 -11.91 -18.08 -17.99

10-Year
DE NL IT ES
QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

Mean 0.356 0.413 0.539 0.482 0.521 0.524 0.527 0.555
Max. 1.328 1.768 1.277 1.188 1.108 1.218 1.210 1.485
Min. 0.028 0.005 0.141 0.001 0.111 0.152 0.123 0.001
SD 0.183 0.199 0.192 0.197 0.186 0.189 0.212 0.252
Skew. 1.392 1.376 0.616 0.457 0.676 0.662 0.586 0.713
Kurt. 6.043 8.161 3.434 3.251 3.336 3.348 3.195 3.637
Jarque–Bera 327.54 661.33 31.69 17.36 37.11 36.20 26.17 47.11
Q(12) 15.89 6.11 12.18 39.44 160.67 138.60 54.02 55.32
ADF -19.47 -21.16 -19.82 -19.55 -4.32 -4.49 -17.23 -17.75

30-Year
DE NL IT ES
QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

Mean 0.331 0.428 0.650 0.636 0.506 0.504 0.623 0.587
Max. 1.353 1.343 2.440 1.736 1.478 1.478 2.027 1.758
Min. 0.001 0.001 0.096 0.001 0.080 0.001 0.071 0.001
SD 0.183 0.243 0.305 0.288 0.226 0.227 0.334 0.317
Skew. 1.219 0.802 0.970 0.601 0.814 0.784 0.843 0.681
Kurt. 5.958 3.598 5.386 3.385 4.060 4.026 3.798 3.187
Jarque–Bera 282.82 56.60 175.77 30.77 72.22 67.86 64.57 36.51
Q(12) 23.93 158.57 31.05 33.78 50.80 52.11 191.55 241.31
ADF -18.75 -9.96 -16.72 -17.16 -17.41 -17.49 -9.47 -7.53
Panel B: Crisis

2-Year
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DE NL IT ES
QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

Mean 0.315 0.356 0.443 0.517 0.444 0.399 0.441 0.394
Max. 1.382 1.335 1.320 1.643 1.559 1.189 1.790 1.514
Min. 0.006 0.001 0.087 0.002 0.039 0.001 0.061 0.001
SD 0.162 0.252 0.192 0.202 0.192 0.185 0.193 0.199
Skew. 1.149 0.783 0.821 0.855 0.988 0.851 1.092 0.920
Kurt. 5.427 3.365 4.153 4.319 4.824 4.180 6.101 4.776
Jarque–Bera 480.79 114.23 178.11 203.18 315.03 189.74 618.68 289.18
Q(12) 104.93 266.78 65.87 53.32 123.03 75.99 77.77 133.01
ADF -26.92 -9.17 -29.52 -19.88 -27.21 -26.91 -28.96 -19.17

5-Year
DE NL IT ES
QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

Mean 0.329 0.410 0.549 0.627 0.549 0.526 0.549 0.523
Max. 1.962 1.167 1.125 1.114 1.256 1.387 1.431 1.132
Min. 0.001 0.001 0.005 0.212 0.121 0.001 0.082 0.001
SD 0.172 0.198 0.175 0.165 0.182 0.184 0.187 0.205
Skew. 1.595 0.357 0.213 0.205 0.487 0.417 0.387 0.358
Kurt. 11.280 2.850 3.184 2.994 3.135 3.339 3.345 2.818
Jarque–Bera 3380.51 23.50 9.56 7.31 42.15 35.80 30.93 24.17
Q(12) 46.17 128.90 187.08 180.43 412.95 619.68 159.55 302.09
ADF -28.47 -26.78 -28.47 -9.61 -8.38 -3.93 -17.71 -9.47

10-Year
DE NL IT ES
QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

Mean 0.325 0.377 0.557 0.621 0.534 0.535 0.491 0.450
Max. 1.122 1.106 1.443 1.537 1.214 1.455 1.334 1.624
Min. 0.033 0.001 0.005 0.120 0.103 0.001 0.069 0.002
SD 0.153 0.188 0.205 0.217 0.191 0.210 0.205 0.204
Skew. 1.150 0.789 0.456 0.497 0.557 0.748 0.826 0.814
Kurt. 5.063 3.386 3.294 3.364 3.063 3.759 3.717 4.479
Jarque–Bera 410.73 116.76 40.64 48.92 54.18 124.41 139.52 213.68
Q(12) 35.72 60.84 62.81 51.20 67.24 90.89 50.19 78.91
ADF -29.18 -29.05 -29.73 -28.57 -12.03 -12.70 -28.86 -27.19

30-Year
DE NL IT ES
QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

QD
(LASSO)

QD
(OLS)

Mean 0.324 0.428 0.672 0.679 0.506 0.504 0.534 0.499
Max. 1.595 1.512 1.818 1.819 1.640 1.645 1.765 1.677
Min. 0.002 0.001 0.002 0.027 0.029 0.001 0.002 0.001
SD 0.186 0.251 0.270 0.272 0.232 0.234 0.280 0.258
Skew. 1.556 0.949 0.541 0.566 1.044 0.990 0.947 0.905
Kurt. 7.739 3.987 3.483 3.402 4.547 4.478 4.078 4.054
Jarque–Bera 1382.30 202.37 62.12 62.88 294.43 269.66 204.12 193.80
Q(12) 35.91 50.84 48.86 59.57 26.72 27.63 128.69 201.29
ADF -28.86 -31.81 -29.24 -19.23 -30.36 -30.56 -11.41 -18.34
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Notes: Panel A shows the Mean, Maximum, Minimum, Standard Deviation, Skewness
and Kurtosis values, Jarque-Bera test for normality, the Ljung-Box portmanteau test for
up to the 12th order Q(12), and the Augmented Dickey-Fuller (ADF) unit root test for
the LASSO-based and the OLS-based quoted depth resiliency (QD) for Germany (DE),
Netherlands (NL), Italy (IT), and Spain (ES). Quoted depth is defined as best bid size
plus best ask size, where size denotes the quantity of securities bid or offered for sale at the
posted bid and ask prices. The OLS-based quoted depth resiliency is estimated according
to Equation (2), while the LASSO-based quoted depth resiliency is estimated according
to Equations (2) and (3) following a two-stage regression approach. The pre-crisis period
spans the dates from January 2008 to October 2009. All statistics are presented for
benchmark securities across four maturity segments, i.e. 2-, 5-, 10-, and 30-year. Panel
B of the table shows the corresponding statistics for the crisis period which extends from
November 2009 to December 2013. The liquidity measures have been winsorized by 95%
in order to avoid extreme values in the resiliency estimates.
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Table 5: Correlation matrix.

Panel A: Pre-crisis
RS (LASSO) QD (LASSO) RS (OLS) QD (OLS) RS QD

RS (LASSO) 1.000
QD (LASSO) 0.353*** 1.000
RS (OLS) 0.072 -0.059 1.000
QD (OLS) 0.016 0.045 0.299*** 1.000
RS -0.144*** -0.002 -0.090* 0.032 1.000
QD 0.055 -0.054 0.110** 0.013 -0.196*** 1.000
Panel B: Crisis

RS (LASSO) QD (LASSO) RS (OLS) QD (OLS) RS QD
RS (LASSO) 1.000
QD (LASSO) 0.290*** 1.000
RS (OLS) 0.062** -0.007 1.000
QD (OLS) 0.064** 0.054* 0.266*** 1.000
RS -0.064** -0.013 -0.113*** -0.033 1.000
QD 0.048 0.014 0.053* 0.086*** -0.071** 1.000

Notes: The table reports the correlation matrix for relative spread (RS) and quoted depth
(QD) resiliency and conventional relative spread and quoted depth liquidity measures.
The OLS-based resiliency is estimated according to Equation (2), while the LASSO-based
resiliency is estimated according to Equations (2) and (3) following a two-stage regression
approach. Relative spread is defined as the best bid-ask spread divided by the midpoint
of the bid and ask quotes. Quoted depth is defined as best bid size plus best ask size,
where size denotes the quantity of securities bid or offered for sale at the posted bid and
ask prices. Correlations of the German 10-year benchmark bond are recorded. Panel
A presents the correlations of the pre-crisis period (January 2008 - October 2009) while
Panel B reports the correlations of the crisis period (November 2009 - December 2013). ***
Denotes statistical significance at the 1 percent level; ** Denotes statistical significance at
the 5 percent level; * Denotes statistical significance at the 10 percent level.
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Table 6: Granger causality tests.

Panel A: Relative spread resiliency
2-Year 5-Year

Pre-crisis Crisis Pre-crisis Crisis
LASSO OLS LASSO OLS LASSO OLS LASSO OLS

VOL→RES 0.124 0.236 0.815 0.939 0.680 0.836 0.679 0.145
RET→RES 0.564 0.658 0.766 0.953 0.789 0.406 0.618 0.360
CDS→RES 0.011 0.010 0.235 0.897 0.000 0.258 0.847 0.087
RES→VOL 0.537 0.133 0.009 0.967 0.739 0.270 0.930 0.311
RES→RET 0.352 0.855 0.026 0.988 0.522 0.247 0.040 0.803
RES→CDS 0.041 0.773 0.589 0.953 0.392 0.948 0.017 0.700

10-Year 30-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.064 0.020 0.222 0.769 0.034 0.810 0.346 0.848
RET→RES 0.637 0.349 0.518 0.960 0.813 0.284 0.339 0.629
CDS→RES 0.000 0.014 0.124 0.347 0.000 0.158 0.813 0.020
RES→VOL 0.588 0.361 0.149 0.707 0.095 0.757 0.704 0.142
RES→RET 0.662 0.419 0.986 0.517 0.927 0.153 0.668 0.180
RES→CDS 0.401 0.051 0.467 0.898 0.388 0.486 0.054 0.214
Panel B: Quoted depth resiliency

2-Year 5-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.892 0.287 0.713 0.909 0.820 0.405 0.788 0.084
RET→RES 0.175 0.972 0.874 0.707 0.514 0.226 0.904 0.679
CDS→RES 0.050 0.004 0.234 0.350 0.262 0.173 0.998 0.255
RES→VOL 0.499 0.965 0.093 0.943 0.453 0.082 0.872 0.134
RES→RET 0.466 0.325 0.250 0.824 0.184 0.882 0.402 0.014
RES→CDS 0.016 0.588 0.246 0.927 0.776 0.750 0.347 0.019

10-Year 30-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.377 0.612 0.951 0.606 0.218 0.890 0.140 0.203
RET→RES 0.810 0.700 0.285 0.586 0.704 0.725 0.106 0.241
CDS→RES 0.968 0.613 0.893 0.494 0.733 0.003 0.343 0.025
RES→VOL 0.087 0.286 0.900 0.485 0.216 0.946 0.698 0.439
RES→RET 0.586 0.573 0.859 0.639 0.897 0.399 0.303 0.614
RES→CDS 0.762 0.382 0.415 0.386 0.506 0.798 0.066 0.324

Notes: The table presents p-values of pairwise Granger causality tests between resiliency,
volatility, bond returns, and CDS spreads across four time-to-maturity groups for German
benchmark securities. Panel A presents Granger causalities when resiliency is measured
using relative spreads, while Panel B presents the corresponding causalities when resiliency
is measured using quoted depths. OLS-based resiliency is estimated according to Equation
(2) whilst LASSO-based resiliency is estimated according to Equations (2) and (3) follow-
ing a two-stage regression approach. The pre-crisis period spans the dates from January
2008 to October 2009 whilst the crisis period extends from November 2009 to December
2013. Statistically significant p-values are shown in bold.
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Table 7: Granger causality tests.

Panel A: Relative spread resiliency
2-Year 5-Year

Pre-crisis Crisis Pre-crisis Crisis
LASSO OLS LASSO OLS LASSO OLS LASSO OLS

VOL→RES 0.213 0.056 0.111 0.492 0.995 0.269 0.022 0.029
RET→RES 0.061 0.321 0.358 0.166 0.138 0.281 0.040 0.335
CDS→RES 0.370 0.868 0.436 0.002 0.426 0.000 0.478 0.000
RES→VOL 0.634 0.953 0.345 0.814 0.295 0.574 0.758 0.300
RES→RET 0.230 0.157 0.209 0.498 0.409 0.478 0.766 0.231
RES→CDS 0.270 0.397 0.975 0.525 0.214 0.260 0.040 0.272

10-Year 30-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.776 0.065 0.466 0.249 0.068 0.858 0.515 0.568
RET→RES 0.539 0.233 0.445 0.576 0.187 0.634 0.436 0.618
CDS→RES 0.766 0.000 0.737 0.001 0.377 0.532 0.303 0.105
RES→VOL 0.458 0.287 0.417 0.465 0.983 0.619 0.139 0.830
RES→RET 0.304 0.442 0.518 0.611 0.079 0.473 0.128 0.629
RES→CDS 0.996 0.015 0.269 0.784 0.523 0.780 0.217 0.989
Panel B: Quoted depth resiliency

2-Year 5-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.121 0.974 0.308 0.443 0.350 0.102 0.626 0.422
RET→RES 0.040 0.835 0.312 0.256 0.452 0.355 0.422 0.606
CDS→RES 0.841 0.746 0.038 0.329 0.478 0.010 0.714 0.708
RES→VOL 0.316 0.999 0.001 0.104 0.062 0.190 0.760 0.937
RES→RET 0.168 0.131 0.005 0.107 0.077 0.681 0.761 0.872
RES→CDS 0.368 0.086 0.036 0.510 0.207 0.528 0.331 0.374

10-Year 30-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.578 0.633 0.127 0.425 0.147 0.116 0.112 0.100
RET→RES 0.695 0.753 0.105 0.202 0.364 0.260 0.048 0.042
CDS→RES 0.606 0.234 0.490 0.635 0.755 0.621 0.050 0.460
RES→VOL 0.308 0.808 0.378 0.631 0.871 0.661 0.101 0.096
RES→RET 0.987 0.543 0.281 0.480 0.066 0.087 0.111 0.101
RES→CDS 0.173 0.684 0.193 0.006 0.553 0.399 0.318 0.344

Notes: The table presents p-values of pairwise Granger causality tests between resiliency,
volatility, bond returns, and CDS spreads across four time-to-maturity groups for Dutch
benchmark securities. Panel A presents Granger causalities when resiliency is measured
using relative spreads, while Panel B presents the corresponding causalities when resiliency
is measured using quoted depths. OLS-based resiliency is estimated according to Equation
(2) whilst LASSO-based resiliency is estimated according to Equations (2) and (3) follow-
ing a two-stage regression approach. The pre-crisis period spans the dates from January
2008 to October 2009 whilst the crisis period extends from November 2009 to December
2013. Statistically significant p-values are shown in bold.
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Table 8: Granger causality tests.

Panel A: Relative spread resiliency
2-Year 5-Year

Pre-crisis Crisis Pre-crisis Crisis
LASSO OLS LASSO OLS LASSO OLS LASSO OLS

VOL→RES 0.013 0.625 0.023 0.541 0.090 0.176 0.525 0.931
RET→RES 0.042 0.271 0.168 0.899 0.295 0.888 0.549 0.931
CDS→RES 0.014 0.000 0.000 0.689 0.000 0.005 0.000 0.117
RES→VOL 0.944 0.486 0.610 0.286 0.003 0.258 0.374 0.165
RES→RET 0.824 0.204 0.872 0.250 0.831 0.704 0.719 0.207
RES→CDS 0.735 0.026 0.468 0.608 0.309 0.596 0.800 0.474

10-Year 30-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.151 0.508 0.538 0.621 0.848 0.685 0.317 0.408
RET→RES 0.398 0.089 0.818 0.118 0.016 0.549 0.820 0.592
CDS→RES 0.000 0.000 0.052 0.117 0.001 0.435 0.001 0.108
RES→VOL 0.011 0.029 0.084 0.912 0.813 0.529 0.000 0.163
RES→RET 0.808 0.696 0.722 0.327 0.522 0.433 0.012 0.725
RES→CDS 0.744 0.279 0.955 0.948 0.168 0.417 0.151 0.386
Panel B: Quoted depth resiliency

2-Year 5-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.140 0.043 0.385 0.548 0.368 0.746 0.795 0.503
RET→RES 0.350 0.655 0.766 0.798 0.738 0.780 0.953 0.799
CDS→RES 0.012 0.012 0.853 0.621 0.000 0.001 0.342 0.332
RES→VOL 0.633 0.758 0.709 0.984 0.459 0.104 0.545 0.395
RES→RET 0.462 0.300 0.559 0.755 0.790 0.271 0.179 0.869
RES→CDS 0.964 0.933 0.401 0.505 0.572 0.764 0.654 0.688

10-Year 30-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.501 0.259 0.798 0.784 0.765 0.801 0.063 0.046
RET→RES 0.741 0.613 0.718 0.347 0.510 0.690 0.144 0.166
CDS→RES 0.000 0.000 0.733 0.559 0.221 0.266 0.106 0.036
RES→VOL 0.529 0.147 0.432 0.927 0.999 0.872 0.752 0.724
RES→RET 0.483 0.179 0.480 0.355 0.761 0.847 0.889 0.873
RES→CDS 0.795 0.839 0.055 0.533 0.102 0.060 0.415 0.575

Notes: The table presents p-values of pairwise Granger causality tests between resiliency,
volatility, bond returns, and CDS spreads across four time-to-maturity groups for Italian
benchmark securities. Panel A presents Granger causalities when resiliency is measured
using relative spreads, while Panel B presents the corresponding causalities when resiliency
is measured using quoted depths. OLS-based resiliency is estimated according to Equation
(2) whilst LASSO-based resiliency is estimated according to Equations (2) and (3) follow-
ing a two-stage regression approach. The pre-crisis period spans the dates from January
2008 to October 2009 whilst the crisis period extends from November 2009 to December
2013. Statistically significant p-values are shown in bold.
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Table 9: Granger causality tests.

Panel A: Relative spread resiliency
2-Year 5-Year

Pre-crisis Crisis Pre-crisis Crisis
LASSO OLS LASSO OLS LASSO OLS LASSO OLS

VOL→RES 0.178 0.325 0.853 0.449 0.141 0.574 0.561 0.128
RET→RES 0.586 0.964 0.676 0.425 0.390 0.861 0.520 0.440
CDS→RES 0.000 0.034 0.007 0.018 0.000 0.120 0.170 0.004
RES→VOL 0.216 0.954 0.374 0.521 0.324 0.339 0.153 0.296
RES→RET 0.287 0.207 0.504 0.705 0.607 0.889 0.193 0.374
RES→CDS 0.339 0.520 0.141 0.049 0.215 0.531 0.517 0.026

10-Year 30-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.437 0.260 0.326 0.927 0.263 0.129 0.935 0.093
RET→RES 0.366 0.561 0.404 0.748 0.020 0.030 0.484 0.951
CDS→RES 0.000 0.019 0.009 0.016 0.000 0.000 0.111 0.000
RES→VOL 0.142 0.685 0.217 0.659 0.795 0.006 0.662 0.573
RES→RET 0.840 0.354 0.758 0.916 0.580 0.856 0.311 0.734
RES→CDS 0.384 0.332 0.366 0.072 0.769 0.181 0.561 0.149
Panel B: Quoted depth resiliency

2-Year 5-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.577 0.424 0.014 0.080 0.108 0.649 0.107 0.125
RET→RES 0.899 0.303 0.006 0.042 0.604 0.820 0.657 0.406
CDS→RES 0.002 0.033 0.083 0.114 0.000 0.001 0.089 0.121
RES→VOL 0.798 0.604 0.557 0.778 0.576 0.774 0.642 0.776
RES→RET 0.193 0.219 0.754 0.920 0.650 0.035 0.959 0.728
RES→CDS 0.948 0.126 0.642 0.059 0.104 0.907 0.363 0.484

10-Year 30-Year
Pre-crisis Crisis Pre-crisis Crisis

LASSO OLS LASSO OLS LASSO OLS LASSO OLS
VOL→RES 0.187 0.176 0.232 0.216 0.194 0.730 0.782 0.975
RET→RES 0.957 0.666 0.707 0.970 0.012 0.023 0.168 0.371
CDS→RES 0.145 0.014 0.001 0.000 0.000 0.000 0.472 0.105
RES→VOL 0.563 0.867 0.511 0.779 0.395 0.335 0.718 0.735
RES→RET 0.883 0.712 0.842 0.931 0.675 0.856 0.077 0.043
RES→CDS 0.554 0.020 0.992 0.782 0.869 0.879 0.989 0.506

Notes: The table presents p-values of pairwise Granger causality tests between resiliency,
volatility, bond returns, and CDS spreads across four time-to-maturity groups for Spanish
benchmark securities. Panel A presents Granger causalities when resiliency is measured
using relative spreads, while Panel B presents the corresponding causalities when resiliency
is measured using quoted depths. OLS-based resiliency is estimated according to Equation
(2) whilst LASSO-based resiliency is estimated according to Equations (2) and (3) follow-
ing a two-stage regression approach. The pre-crisis period spans the dates from January
2008 to October 2009 whilst the crisis period extends from November 2009 to December
2013. Statistically significant p-values are shown in bold.
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Table 10: PCA periphery countries.

Panel A: Relative spread resiliency
LASSO OLS

Pre-crisis Crisis Pre-crisis Crisis
Full Index Full Index Full Index Full Index

PCA 1 (%) 29.84 87.57 32.10 91.64 16.40 47.73 12.82 43.90
PCA 1+2 (%) 53.65 95.84 52.18 94.98 25.29 68.07 23.76 65.21
PCA 1+2+3 (%) 70.51 98.14 71.59 97.91 32.91 85.11 32.91 84.74
Panel B: Quoted depth resiliency

LASSO OLS
Pre-crisis Crisis Pre-crisis Crisis

Full Index Full Index Full Index Full Index
PCA 1 (%) 17.40 53.70 19.80 56.61 12.81 36.06 18.37 49.89
PCA 1+2 (%) 28.78 71.59 32.68 78.35 21.87 60.65 26.54 68.03
PCA 1+2+3 (%) 37.93 87.41 43.15 89.62 29.60 82.44 34.19 85.21

Notes: The table presents Principal Component Analysis (PCA) results for periphery
euro area bond markets (Italy and Spain). Panel A presents results for relative spread
resiliency, whilst Panel B reports the corresponding results for quoted depth resiliency.
OLS-based resiliency is estimated according to Equation (2) while LASSO-based resiliency
is estimated according to Equations (2) and (3) following a two-stage regression approach.
The full set of data employs spread-based resiliency and depth-based resiliency for each
country across four maturity segments. The index data equally weights each individual
spread or depth-based resiliency measure available at a given maturity. The pre-crisis
period spans the dates from January 2008 to October 2009, while the crisis period extends
from November 2009 to December 2013.
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Table 11: PCA core countries.

Panel A: Relative spread resiliency
LASSO OLS

Pre-crisis Crisis Pre-crisis Crisis
Full Index Full Index Full Index Full Index

PCA 1 (%) 22.16 86.34 20.10 88.42 12.69 45.79 12.71 46.49
PCA 1+2 (%) 38.39 91.52 35.44 93.34 19.57 65.81 18.09 68.47
PCA 1+2+3 (%) 50.98 96.15 50.44 96.99 25.66 84.10 23.45 86.18
Panel B: Quoted depth resiliency

LASSO OLS
Pre-crisis Crisis Pre-crisis Crisis

Full Index Full Index Full Index Full Index
PCA 1 (%) 11.53 49.56 9.57 47.48 10.00 41.77 8.73 37.90
PCA 1+2 (%) 19.91 68.86 18.29 69.21 17.81 65.28 14.83 61.36
PCA 1+2+3 (%) 27.56 85.06 26.12 85.76 23.54 84.59 20.19 82.32

Notes: The table presents Principal Component Analysis (PCA) results for core euro area
bond markets (Germany and Netherlands). Panel A presents results for relative spread
resiliency, whilst Panel B reports the corresponding results for quoted depth resiliency.
OLS-based resiliency is estimated according to Equation (2) while LASSO-based resiliency
is estimated according to Equations (2) and (3) following a two-stage regression approach.
The full set of data employs spread-based resiliency and depth-based resiliency for each
country across four maturity segments. The index data equally weights each individual
spread or depth-based resiliency measure available at a given maturity. The pre-crisis
period spans the dates from January 2008 to October 2009, while the crisis period extends
from November 2009 to December 2013.
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Figure 1: Plotted is LASSO-based relative spread resiliency for the period spanning the
dates from January 2008 to December 2013 for the 10-year benchmark bond of the following
countries: Germany (DE), Netherlands (NL), Italy (IT), and Spain (ES). Vertical dashed
red lines correspond to the start of the crisis period, i.e. November 2009.
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Figure 2(a): Response of LASSO-based relative spread resiliency to the endogenous vari-
ables in Germany for the 10-year benchmark. The Impulse Response Functions run during
the pre-crisis period in the euro area (January 2008 to October 2009).
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Figure 2(b): Response of the endogenous variables to LASSO-based relative spread re-
siliency in Germany for the 10-year benchmark. The Impulse Response Functions run
during the pre-crisis period in the euro area (January 2008 to October 2009).
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Figure 3(a): Response of LASSO-based quoted depth resiliency to the endogenous variables
in Germany for the 10-year benchmark. The Impulse Response Functions run during the
pre-crisis period in the euro area (January 2008 to October 2009).
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Figure 3(b): Response of the endogenous variables to LASSO-based quoted depth re-
siliency in Germany for the 10-year benchmark. The Impulse Response Functions run
during the pre-crisis period in the euro area (January 2008 to October 2009).
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Figure 4(a): Response of LASSO-based relative spread resiliency to the endogenous vari-
ables in Germany for the 10-year benchmark. The Impulse Response Functions run during
the crisis period in the euro area (November 2009 to December 2013).
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Figure 4(b): Response of the endogenous variables to LASSO-based relative spread re-
siliency in Germany for the 10-year benchmark. The Impulse Response Functions run
during the crisis period in the euro area (November 2009 to December 2013).
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Figure 5(a): Response of LASSO-based quoted depth resiliency to the endogenous variables
in Germany for the 10-year benchmark. The Impulse Response Functions run during the
crisis period in the euro area (November 2009 to December 2013).
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Figure 5(b): Response of the endogenous variables to LASSO-based quoted depth re-
siliency in Germany for the 10-year benchmark. The Impulse Response Functions run
during the crisis period in the euro area (November 2009 to December 2013).
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Figure 6(a): Response of LASSO-based relative spread resiliency to the endogenous vari-
ables in Spain for the 10-year benchmark. The Impulse Response Functions run during
the pre-crisis period in the euro area (January 2008 to October 2009).
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Figure 6(b): Response of the endogenous variables to LASSO-based relative spread re-
siliency in Spain for the 10-year benchmark. The Impulse Response Functions run during
the pre-crisis period in the euro area (January 2008 to October 2009).
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Figure 7(a): Response of LASSO-based quoted depth resiliency to the endogenous variables
in Spain for the 10-year benchmark. The Impulse Response Functions run during the pre-
crisis period in the euro area (January 2008 to October 2009).
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Figure 7(b): Response of the endogenous variables to LASSO-based quoted depth re-
siliency in Spain for the 10-year benchmark. The Impulse Response Functions run during
the pre-crisis period in the euro area (January 2008 to October 2009).
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Figure 8(a): Response of LASSO-based relative spread resiliency to the endogenous vari-
ables in Spain for the 10-year benchmark. The Impulse Response Functions run during
the crisis period in the euro area (November 2009 to December 2013).
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Figure 8(b): Response of the endogenous variables to LASSO-based relative spread re-
siliency in Spain for the 10-year benchmark. The Impulse Response Functions run during
the crisis period in the euro area (November 2009 to December 2013).78
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Figure 9(a): Response of LASSO-based quoted depth resiliency to the endogenous variables
in Spain for the 10-year benchmark. The Impulse Response Functions run during the crisis
period in the euro area (November 2009 to December 2013).
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Figure 9(b): Response of the endogenous variables to LASSO-based quoted depth re-
siliency in Spain for the 10-year benchmark. The Impulse Response Functions run during
the crisis period in the euro area (November 2009 to December 2013).
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